Tolerance jsou dány pouze jako absolutní hodnoty /∆maxX/ nebo
/δmaxX/.
Při hledání neurčitosti měření postupujeme jinak případě přímých měření jinak případě
nepřímých měření. Neurčitost měření (absolutní hodnota největší možné chyby měření nebo
tolerance měření) dána chybami přístrojů, tolerancemi rezistorů, kondenzátorů cívek
užívaných měřeních (většinou tzv. digitální voltmetry) méně přesných ale
časově stabilních dílů.Příčiny náhodných chyb jsou různé:
• Šumy
• Neznámé změny podmínek měření (teplota, vlhkost, rušivá elektromagnetická pole). Číslicové měřicí
přístroje zaokrouhlují výsledek samočinně.
• Zaokrouhlování výsledků měření, případě analogového měřicího přístroje
zaokrouhlování provádí pozorovatel nejbližší dílek nebo jeho část. Jsou hodnoty použitých součástek sice nepřesné, ale časově
stálé, lze určit výslednou systematickou chybu experimentálně korigovat při výrobě.
. Tak
lze vyrábět velmi přesné složité přístroje (např. etalonů dekád), náhodnými chybami (krajní chybou) a
vnějšími rušivými vlivy. Šířka tohoto intervalu rovna
dvojnásobku absolutní hodnoty největší možné absolutní chyby měření korekci
systematické chyby. číslicových přístrojů tento druh chyb
nazývá kvantizační šum.4. Aby byly hodnoty /∆maxX/ nebo /δmaxX/ nalezené,
z tolerancí náhodných chyb opravdu největšími možnými chybami měření, nutno
korigovat systematickou chybu. Neurčitost měření
V praxi většinou nespokojujeme chybou jednotlivého měření, ale zajímá nás meze
intervalu, mezi kterými leží skutečná hodnota měřené veličiny. Pro měřicí systém nebo měřicí přístroj, který zkládá
z velkého počtu součástí určení maximální možné chyby tolerancí všech součástí
nereálné. Jejich znaménko neznáme.
1.
Pokud ale měříme teplotu okolí známe teplotní koeficienty měřicího zařízení, je
chyba vlivem změn teploty chybou systematickou tedy korigovatelnou. totiž velmi malá pravděpodobnost, všechny součástí mají chyby téhož
znaménka největší hodnoty