ELEKTRO 2011-2

| Kategorie: Časopis  | Tento dokument chci!

Vydal: FCC Public s. r. o. Autor: FCC Public Praha

Strana 11 z 68

Jak získat tento dokument?






Poznámky redaktora
Již malé množství vodí- ku vzduchu tvoří výbušnou směs. roztok kyseli- ny fosforečné (H3PO4), hydroxidu draselné- ho (KOH), tavenina alkalických uhličitanů či pevný oxidický elektrolyt (Y2O3). 10 schéma systému s fotovol- taickým zdrojem energie, kde část produ- kované elektrické energie dodávána distri- buční sítě a část energie využita výrobu vodíku z vody v elektrolyzéru. K tomuto účelu používají setrvačníky. 12. S vodíkem nutné při jeho skladování zacházet velmi opatrně, podle přísných bez- pečnostních norem. Vodík lze vá- zat i na kovové prášky, s nimiž tvoří hydridy kovů. Jeden typ využívá setrvační- ky velké hmotnosti uspořádané takového tvaru, aby bylo dosaženo největšího mo- mentu setrvačnosti. Schéma setrvačníkového akumulátoru energie 1 kryt setrvačníku s vakuem uvnitř, kompozi- tové těleso setrvačníku, víceosé magnetické uložení, mechanické uložení pro případ defektu magnetického uložení, čidla vyosení v  horizontálním směru, čidla vyosení ve vertikálním směru, optický snímač otáček, 8 permanentní magnety, elektrické vinutí (motor/generátor), víceosé magnetické uložení, mechanické uložení pro případ selhání magnetického uložení, příruba pro čerpání vývěvou 6 1 5 3 7 12 9 8 10 11 Obr. Akumulace energie v mechanických akumulátorech Mechanické akumulátory akumulují ener- gii v podobě kinetické energie. [2]. Druhý typ naopak používá leh- čí setrvačníky pracující při vysokých otáč- kách 100 000 min–1 . Využití setr- vačníků k akumulaci energie časté spa- lovacích motorech pro vyrovnávání nerov- noměrných sil.9ELEKTRO 2/2011 Vodík lze vyrobit i chemickou reakcí me- tanu vysokých teplot (800 700 °C), přičemž nastávají reakce: CH4 H2O 3H2 CO H2O CO2 H2 Reakce mohou probíhat v tzv. Palivové články jsou elektrochemická zaří- zení přeměňující chemickou energii v pali- vu během oxidačně-redukční reakce přímo na generaci elektrického proudu vzniku menšího množství tepla. Tento vodík je využíván jako palivo pro palivové články pohánějící vozidla. fotochemic- kém reaktoru, kde vysokých teplot dosahu- je koncentrací slunečního záření. Phoenix- -Zeppelin) nabízejí systémy záložního na- pájení (UPS) s mechanickým akumulátorem energie. studenou oxi- dací vodíku neboli studeným spalováním. Nejjednodušší nej- propracovanější jsou pa- livové články založené na slučování vodíku s kyslí- kem. Cel- kovou reakci lze tedy vy- jádřit rovnicí: **VZOREC1**   2 442 SO2HSOH **VZOREC2**   2ePbPb 2 **VZOREC3**   2ePbSOSOPb 4 2 4 **VZOREC4** OHPbSO2eSOH2HPbO 24422   **VZOREC5** 424422 PbSOOH2PbSOPbSOH2PbO  **VZOREC6** J345 2 1 2  CUW **VZOREC7** hmgWp  **VZOREC8**   2eOHOH 2 2 2 **VZOREC9**   2 2 O2eO 2 1 **VZOREC10** O2HO2H 222  **VZOREC11** 2 2 1 JEk  **VZOREC12** 2 2 1 LIW  Existují palivové články různých kon- strukcí, rozměrů a maximálních výkonů. 10. 11., elektrolytem může být např. Pro kinetickou energii akumulova- nou v setrvačníku platí: **VZOREC1**   2 442 SO2HSOH **VZOREC2**   2ePbPb 2 **VZOREC3**   2ePbSOSOPb 4 2 4 **VZOREC4** OHPbSO2eSOH2HPbO 24422   **VZOREC5** 424422 PbSOOH2PbSOPbSOH2PbO  **VZOREC6** J345 2 1 2  CUW **VZOREC7** hmgWp  **VZOREC8**   2eOHOH 2 2 2 **VZOREC9**   2 2 O2eO 2 1 **VZOREC10** O2HO2H 222  **VZOREC11** 2 2 1 JEk  **VZOREC12** 2 2 1 LIW  kde J  je moment setrvačnosti, ω úhlová rychlost setrvačníku. Jejich schéma na obr. V praxi byl testován autobus poháněný energií akumulovanou velkém setrvačníku. Na obr. Používají dva typy setrvačníkových akumulátorů. Napě- tí jednoho palivového článku bývá přibliž- ně U » 1 V, články rovněž mohou skládat sériově baterií. platiny) a fungují i jako katalyzátory chemických reakcí. Kontinuálně musí být při- váděno palivo i okysličo- vadlo k elektrodám a od- váděny spaliny. Porézní elek- trody jsou odděleny elek- trolytem, v oblasti pórů vzniká třífázové rozhra- ní, kde dochází k elektro- chemické oxidaci paliva a k redukci okysličovadla. Pro tak vysoké otáčky Obr. Pracují při otáčkách do 8 000 min–1 . záporné elek- trodě nastává reakce: **VZOREC1**   2 442 SO2HSOH **VZOREC2**   2ePbPb 2 **VZOREC3**   2ePbSOSOPb 4 2 4 **VZOREC4** OHPbSO2eSOH2HPbO 24422   **VZOREC5** 424422 PbSOOH2PbSOPbSOH2PbO  **VZOREC6** J345 2 1 2  CUW **VZOREC7** hmgWp  **VZOREC8**   2eOHOH 2 2 2 **VZOREC9**   2 2 O2eO 2 1 **VZOREC10** O2HO2H 222  **VZOREC11** 2 2 1 JEk  **VZOREC12** 2 2 1 LIW  a dva volné elektrony se předají elektrodě. V mnoha materiálech totiž vodík difunduje krystalické mřížky a působí křehnutí materiálu. Po­ dle konstrukce a typu mohou pracovat při tep- lotách 000 °C, jako palivo mohou používat kromě vodíku např. Elektrody bývají z ušlech- tilých materiálů (např. Ke skladování vodíku jsou určeny speciál- ní tlakové zásobníky vyrobené z materiálů ne- reagujících s vodíkem. Energie akumulovaná vodíku může být opět přeměněna elektrickou energii ve zmíněných palivových článcích řízenou elektrochemickou reakcí tzv. Pórovitá elektroda umož- ňuje elektrolytu vzlínat do pórů, ale tlak plynu za elektrodou nedovolu- je kapalině póry pronikat. metan (CH4), metanol (CH3OH), hydrazin (N2H4) apod. Některé firmy (např. Schéma fotovoltaického systému (část elektrické energie je dodávána distribuční sítě, část energie využita pro výrobu vodíku) fotony E = hν fotovoltaické panely DC DCvoda elektrolyzér zásobník H2O2 lokální síť vodní emise vozidlo palivové články či kapalný vodík AC rozvodná síť transformátor měniče AC AC Obr. Schéma palivového článku elektrický proud kladná elektroda elektrolyt záporná elektroda okysličovadlo palivo e– e– e– e– e– e– e– e– e– H H+ H H H H O e– H O H H O H H e– O e– e– O e– e– O O O O O H e– 2 . Na kladné elektrodě nastá- vá reakce: **VZOREC1**   2 442 SO2HSOH **VZOREC2**   2ePbPb 2 **VZOREC3**   2ePbSOSOPb 4 2 4 **VZOREC4** OHPbSO2eSOH2HPbO 24422   **VZOREC5** 424422 PbSOOH2PbSOPbSOH2PbO  **VZOREC6** J345 2 1 2  CUW **VZOREC7** hmgWp  **VZOREC8**   2eOHOH 2 2 2 **VZOREC9**   2 2 O2eO 2 1 **VZOREC10** O2HO2H 222  **VZOREC11** 2 2 1 JEk  **VZOREC12** 2 2 1 LIW  a dva volné elektrony se přijmou z elektrody. Zajímavým využitím pa- livových článků vodíkový elektromobil, který nemá spalovací motor s přímým vstři- kováním, ale palivové články a elektromotor