Záměr studijního textu je seznamit čtenáře s metodami zpracování signálů v jednotlivých částech obecného digitálního komunikačního systému. Aktuální vydání sezabývá modulacemi v základním pásmu, analogovými a číslicovými modulacemi v přeneseném pásmu, metodami synchronizace a metodami mnohonásobného přístupu. Kapitola modulace v základním pásmu seznamuje čtenáře se základními vlastnostmi linkových kódů, porovnává jejich vlastnosti v časové i spektrální oblasti, vysvětluje základní metody detekce signálu v šumu a dává teoretický základ pro pochopení přizpůsobené filtrace a činnosti korelačního přijímače. Teoretické základy prezentované v této kapitole jsou nezbytné pro zkoumání spektrálních vlastností modulací v přeneseném pásmu a vytváří základ pro analýzu chybovosti přenosu.
27 )
1.32 )
Pokud dále platí
( konsttgtf 1.32 rovnost.) při rostoucím argumentu monotónně klesá,
můžeme najít minimum chybné detekce podle vztahu
( )
( ⎥
⎥
⎥
⎥
⎦
⎤
⎢
⎢
⎢
⎢
⎣
⎡
−−−=⎥⎦
⎤
⎢⎣
⎡ −
=
−
∞
∞−
∫ tdthtTstTs
hN
TyTy
P
TyTy
ch
44444 344444 21
0100
0100
0
0100
2
1
max
2
maxmin
σ
.29 )
kde symbol označuje tzv. 1. Protože uvažujeme AWGN konstantní
výkonovou spektrální hustotou, můžeme zavést Pn(f) N0, pak N0Bn.25 )
Pro případ P(1) P(0) 131H131H131H( 1. Dosazením g(t) h(t) f(t) s0(T0 s1(T0 dostaneme
. normu funkce
( )∫
∞
∞−
= dttff
2
. 1.30 )
Pro zjednodušení popisu omezíme případ zpráv, pro které platí P(1) P(0) budeme
minimalizovat 132H132H132H( 1. 1. Optimální nastavení prahu zjistíme
nalezením extrému 130H130H130H( 1.Vybrané kapitoly systémů rádiové komunikace 15
pravděpodobnost chybného vyhodnocení menší.33 )
bude vztahu 135H135H135H( 1.2.2 Optimalizace filtru h(t), přizpůsobený filtr
Výkon náhodného procesu lze obecně vyjádřit vztahem
222
μσμ +=+= DPn 1. 1.27 Protože funkce Q(. Výkon náhodného procesu lze také vyjádřit
pomocí jeho jednostranné výkonové spektrální hustoty Pn(f) šířky pásma (jednostranná
PSD definovaná pro rozsah kmitočtů ∞).25 zjednoduší na
( )
2
0100 TyTy +
=γ 1. výstupu filtru
bude výkon šumu
( 2020202
222
h
N
dtth
N
dffH
N
=== ∫∫
∞
∞−
∞
∞−
νσ 1.24 )
( )
( )
( )
( )1
0
ln
2
0
0001
0100
P
P
TyTy
TyTy
d
dPch
−
+
+
=⇒=
σ
γ
γ
.28 )
kde disperze neboli variance náhodného procesu jeho střední hodnota.31 )
Pro nalezení tohoto maxima použijeme Cauchy-Schwarzovu nerovnost 133H133H133H[ 134H134H134H[ která
platí při splnění podmínky ∞<gf ,
( gfdttgtf ⋅≤∫
∞
∞−
.
V našem případě platí tedy σ2
.26 )
Pravděpodobnost vzniku chyby pak bude
( )
⎥⎦
⎤
⎢⎣
⎡ −
=
σ2
0100 TyTy
QPch 1.3