Záměr studijního textu je seznamit čtenáře s metodami zpracování signálů v jednotlivých částech obecného digitálního komunikačního systému. Aktuální vydání sezabývá modulacemi v základním pásmu, analogovými a číslicovými modulacemi v přeneseném pásmu, metodami synchronizace a metodami mnohonásobného přístupu. Kapitola modulace v základním pásmu seznamuje čtenáře se základními vlastnostmi linkových kódů, porovnává jejich vlastnosti v časové i spektrální oblasti, vysvětluje základní metody detekce signálu v šumu a dává teoretický základ pro pochopení přizpůsobené filtrace a činnosti korelačního přijímače. Teoretické základy prezentované v této kapitole jsou nezbytné pro zkoumání spektrálních vlastností modulací v přeneseném pásmu a vytváří základ pro analýzu chybovosti přenosu.
8. 1. Dosazením 144H144H144H(
1. okamžiku
vzorkování hodnota odezvy filtru y0(t) maximální poměr SNR proto okamžiku
rozhodování také maximální. Dosazením h(t) 140H140H140H( 1. Podobně jako výše uvedeném postupu za
pomoci Cauchy-Schwarzovy nerovnosti lze dokázat, 146H146H146H( 1.38 )
Vztah 147H147H147H( 1.35 )
přičemž hodnota konstanty nepodstatná proto možné zvolit =1.
jestliže ostrá nerovnost bude nahrazena rovností.8: Určení odezvy přizpůsobeného filtru
.35 145H145H145H( 1.34 bude možná největší, tj. Protože energie obou prvků jsou
stejné, můžeme psát výsledná chybovost bude
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
=
0
2
N
E
QP b
ch 1. Pak E1, a
( )tTsth 1.
( ττττττ dTstsdhtsthtsty
tt 4847648476
−−=−=∗= 01
0
1
0
110
Obr.31 bude dosaženo, jestliže levá strana 137H137H137H( 1. tomuto stavu dojde, bude splněna
podmínka 138H138H138H( 1. druhé straně 143H143H143H( 1. LTI filtr impulsní
charakteristikou podle 139H139H139H( 1.35 patrné, vlastnosti filtru závisí volbě signálového páru s0(t) s1(t) na
vzorkovacím okamžiku T0.
Vzorkovací interval proto volí tak, aby filtr h(t) splnil podmínku kauzality zpoždění před
provedením rozhodnutí bylo minimální.31 obdržíme
( )∫∫
∞
∞−
∞
∞−
−=−−−=
+
= 100
2
10
2
0
0100
2
1
2
1
2
1
2
EEdttTsdttTs
TyTy
γ 1.
S využitím vlastností přizpůsobeného filtru lze některé vztahy zjednodušit.33 )
( ]tTstTsth −−−= 0100λ 1.39 )
Postup výpočtu odezvy přizpůsobeného filtru obecný signál ukazuje 148H148H148HObr.36 dosáhne minima při splnění
podmínky s0(t) -s1(t).Fakulta elektrotechniky komunikačních technologií VUT Brně
( htTstTsdtthtTstTs ⋅−−−≤−−−∫
∞
∞−
01000100 1.37 )
kde jsou energie symbolů s0(t) s1(t).31 dostaneme
( )
⎟⎟
⎟
⎠
⎞
⎜⎜
⎜
⎝
⎛ −
=
⎟⎟
⎟
⎠
⎞
⎜⎜
⎜
⎝
⎛ −−−
=
0
2
10
0
2
0100
22 N
ss
Q
N
tTstTs
QPch 1.34 )
s uvážením platnosti 141H141H141H( 1.34 )
Maxima vztahu 136H136H136H( 1.35 nazývá přizpůsobený filtr.36 vyplývá, chybovost neovlivňuje.38 říká, impulsní charakteristika přizpůsobeného filtru rovna časově
otočenému průběhu vyslaného symbolu (posunutého T0).36 )
Z 142H142H142H( 1. 1