Publikace zpracovává teorii ventilačních a tepelných výpočtů elektrických strojů točivých včetně problematiky měření, zkoušení a modelování. V závěru se probírají výzkumné a vývojové problémy chlazení, ventilace a hluku elektrických strojů točivých. Kniha je určena výzkumným a vývojovým pracovníkům, inženýrům, konstruktérům a dalším pracovníkům z oblasti konstrukce elektrických strojů.
Nejprve stručně zmíníme analytické metodě řešení ventilačních sítí, kterou
zpočátku probereme nejjednodušších případech. Při řešení ventilačních sítí předpokládáme, jednot
livé odpory síti vzájemně neovlivňují. 19a). Existují ještě jiné
závislosti f(Q než kvadratické, např.(2-62)
kde Ccxo lokální činitel odporu výstupu nerotujících kanálů. sítě složené ů
Úbytky tlaku nich jsou charakterizovány vztahem (Atkin-
sonův zákon) při konstantní hodnotě aerodynamických odporů Jde tedy sítě
složitého tvaru turbulentním prouděním plynu nebo kapaliny. 19. sérii, paralelně, kombinovaně
(tj.
Ap RQ.4.4. sériově paralelně) atd. sítích laminárním prouděním, které elektrických stro
jích téměř nevyskytují výjimkou proudění filtrech), platí lineární závislost
Abychom mohli správně navrhnout zdroj tlaku pro elektrický stroj, třeba
znát charakteristiku sítě, resp. síť dvěma aerodynamickými odpory, sérii (obr. Jde sítě, nichž při turbulentním proudění pře
vládají třecí odpory. sítě tzv. Řazení aerodynamických odporů
a) sériové, paralelní
Výsledný aerodynamický odpor stanovíme těchto vztahů:
Q Qz
APl RxQ2', APl 2Q2;
76
. ventilačního obvodu —f(Q němž bude na
vrhovaný zdroj tlaku pracovat. polytropickou závislostí
Ap RQn, kde 1,8 2,0.
Mějme např. Ů
( )
2.
2.
ÄJ— <?•[ —ŕ
Obr. Tento předpoklad umožňuje jednoduše
skládat jednotlivé úbytky tlaku vznikající těchto odporech. Síť tvoří několik aerodynamických odporů (venti
lačních členů) propojených mezi sebou různě, např.1