Teorie řízení

| Kategorie: Skripta  | Tento dokument chci!

Skripta byla napsána zejména proto, že v češtině neexistuje moderní učebnice teorie řízení lineárních soustav. Velmi dobrá učebnice F. Nixona (lit. [3]), přeložená do češtiny, která je názorná a ve své době ceněná, je více než třicet let stará a tedy neodpovídá současnému pojetí.Vysokou teoretickou úroveň české školy dokládají publikace [1], [2] a [4] a lze je doporučit jako doplňkovou studijní literaturu. Nejvhodnější doplňkovou literaturou pak jsou skripta prof. Vavřína [5], určená pro studenty oboru kybernetika, automatizace a měření.

Vydal: FEKT VUT Brno Autor: UVEE - Jiří Skalický

Strana 93 z 103

Vámi hledaný text obsahuje tato stránku dokumentu který není autorem určen k veřejnému šíření.

Jak získat tento dokument?






Poznámky redaktora
Návrh stavového regulátoru metodou urč ení pólů. 10.4 Návrh stavového regulátoru diskrétní soustavy Podobně, jako spojitý soustav, lze pro diskré tnísoustavy definovat řiditelnost a pozorovatelnost. CGn−1  T Pozorovatrelnost důlež itá chceme-li rekonstruovat neměřitelné nebo neměřené stavové proměnné pomocípozorovatele tyto rekonstruované stavové proměnné ná sledně použ pro vrh stavové regulá toru.18)x(k HK)x(k) v níž nová matice soustavy zpětnou vazbou vlastníčísla, která jsou(G HK) zvolený póly uzavřené smyčky, tj. prvky zatím nezná matice určíme tak, abychom dostali zvolená vlastníčísla ..H .10. Zatímco klasický PID-regulá tor řídísoustavu pouze zpětnou vazbou stupu, stavový regulá tor potřebuje zpětné vazby všech stavový proměnný ch. koeficientů zesílení, které mohou jak kladné tak i zá porné který jsou sobeny jednotlivé stavové proměnné . Definicex(k) xf řiditelnosti: Diskré tnísoustava řiditelná jestliž matice řiditelnosti má hodnost n. Připojením řídicího signá (10.15)y(k) Cx(k) Pozorovatelnost: Soustava pozorovatelná jestliž kaž počá tečnístav můž ex(0) bý určen pozorová nívý stupů konečný počet vzorkovacích period. zřejmé tudíž více informacío průběhu přechodný dějů umož ňuje kvalitnějšířízenísoustav vyšších dů. Stavový regulá tor vektor vah (tj.16)x(k Gx(k) Hu(k) Předpoklá dejme, řídicísigná (bez omezeníamplitudy) je (10.. Ř iditelnost: Soustava řiditelná jestliž existuje takový řídicísigná kterýu(k) převede stav pož adované stavu nejvíce vzorkovacích period. 88 . Definicey(k) pozorovatelnosti: Diskré tnísoustava pozorovatelná jestliž matice pozorovatelnosti má hodnost n. 10.C .14)x(k Gx(k) Hu(k) v níž matice čtvercová matice n]. Mějme diskré tnísoustavu (10.. Je lineá nídiskré tnísoustava jedním řídicím vstupem (10.. Gn−1H Není-li soustava řiditelná nelze navrhnout stavový regulá tor. Grafické zná zorněnísoustavy soustavy stavový regulá torem obr.2 b), popsanou stavovou rovnicí (10.17) vstup dostaneme soustavu zpětnou vazbou (viz obr. Pro definici pozorovatelnosti předpoklá neřízenou soustavu x(k Gx(k) (10.17)u(k) −Kx(k) kde matice rozměru stavová zpětnovazebnímatice koeficientů stavové ho[1 n] regulá toru.2