Teorie řízení

| Kategorie: Skripta  | Tento dokument chci!

Skripta byla napsána zejména proto, že v češtině neexistuje moderní učebnice teorie řízení lineárních soustav. Velmi dobrá učebnice F. Nixona (lit. [3]), přeložená do češtiny, která je názorná a ve své době ceněná, je více než třicet let stará a tedy neodpovídá současnému pojetí.Vysokou teoretickou úroveň české školy dokládají publikace [1], [2] a [4] a lze je doporučit jako doplňkovou studijní literaturu. Nejvhodnější doplňkovou literaturou pak jsou skripta prof. Vavřína [5], určená pro studenty oboru kybernetika, automatizace a měření.

Vydal: FEKT VUT Brno Autor: UVEE - Jiří Skalický

Strana 26 z 103

Vámi hledaný text obsahuje tato stránku dokumentu který není autorem určen k veřejnému šíření.

Jak získat tento dokument?






Poznámky redaktora
..4 0.2 Frekvenč přenos Přenosová funkce funkcíkomplexníproměnné Uvaž ujeme-li pouzeF(p) jω imaginá rníslož proměnné získá frekvenčnípřenos. Frekvenčnícharakteristiku získá buďvý počtem nebo měřením reá lné soustavě tak, e měníme frekvenci vstupního sinusové signá nuly nekonečna (prakticky však od vhodně zvolené zpětnovazebních soustav vstupem daná hodnota,ωmin ωmax vý stupem pak skutečná hodnota regulované veličiny.. b2(jω) b1 (jω) n + an(jω) n−1 + .2 0. a2p a1 kterou přepíšeme formá lně tak, nahradíme jω (4. Vstupem soustavy sinusový signá frekvence kde 〈0, ∞〉 vý stupem opět sinusový signá frekvence jehož amplituda zový posun oprotiω signá vstupnímu jsou funkcífrekvence .Odezvu skok ukazuje sledujícíobrá zek 0 0. a2(jω) a1 je komplexníčíslo, které přírespektová nívztahůF(jω) (jω) 2 = −ω2 , (jω) 3 = −jω3 , (jω) 4 = ω4 můž eme upravit tvaru (4.. Frekvenčnípřenos plnějω charakterizuje soustavu..8 0 0.2 0..4 0..6 0.6 0...4 Odezva skok t(s) 4..ω Grafická vislost amplitudy stupního sinusové signá vzhledem vstupnímu sinusové signá nazý frekvenčnícharakteristika.2 1. b2p b1 pn anpn−1 . Mějme přenosovou funkci (4.7)F(jω) P(ω) jQ(ω) ve které reá lná frekvenčního přenosu imaginá rníčá frekvenčníhoP(ω) Q(ω) přenosu.. 21 .6)F(jω) = bm+1(jω) m + bm(jω) m−1 + .8 1 1..5)F(p) = bm+1pm bmpm−1