Teorie rádiové komunikace

| Kategorie: Skripta  | Tento dokument chci!

... text je určen jak zájemcům z řad studentů magisterského, doktorského a bakalářského studia elektrotechnických oborů vysokých škol, tak i zájemcům z řad odborné veřejnosti, kteří si potřebují osvěžit či doplnit znalosti z dané oblasti. Text je členěn do celkem 18 kapitol. Pomyslně může být rozdělen do dvou částí - úvodní spíše teoreticky zaměřené (Teorie informace, Komunikační signály, Mezi symbolové interference, Příjem komunikačních signálů), následované více aplikačně zaměřenými kapitolami (Číslicové modulace, Rozprostřené spektrum a CDMA, Systémy s více nosnými a OFDM, Kombinace OFDM/CDMA/UWB, Komunikační kanály, Vyrovnavače kanálů, Protichybové kódování, UWB komunikace, MIMO systémy, Softwarové, kognitivní a kooperativní rádio, Adaptivní metody v rádiových komunikacích, Analýza spektra rádiových signálů, Změna vzorkovacího kmitočtu, Zvyšování přenosové rychlosti rádiových komunikačních systémů) ...

Vydal: FEKT VUT Brno Autor: UREL - Roman Maršálek

Strana 30 z 144

Vámi hledaný text obsahuje tato stránku dokumentu který není autorem určen k veřejnému šíření.

Jak získat tento dokument?






Poznámky redaktora
18 obdržíme (až na konstantu) pro optimální přenos přizpůsobeného filtru [2]: H(f) S∗ (f)e−j2πfT . (4.24) což souladu rovnicí 4.17) Naším cílem navrhnout takovou přenosovou funkci H(f), která by, při pevně daném vstupním signálu Fourierovou transformací S(f) maximalizovala SNR.19) Maximální hodnoty nabyde SNR případě rovnosti levé pravé strany.21) kde energie signálu s(t). základě Schwarzovy nerovnosti vztahu 4.16) Dosazením vztahu pro SNR obdržíme: SNR = |o(T)|2 E[n2(t)] = ∞ −∞ H(f)S(f)e(j2πfT) df 2 N0 2 ∞ −∞ |H(f)|2 df .8. (4. (4. (4. základě Par- sevalova vztahu: ∞ −∞ |S(f)|2 df = ∞ −∞ |s(t)|2 dt (4.23) a pro reálný signál s(t) (platí tedy S∗ (f) S(−f)): h(t) s(T t), (4. (4.20) můžeme také psát: SNR = 2 N0 ∞ −∞ |S(f)|2 df = 2 N0 ∞ −∞ |s(t)|2 dt 2Es/N0, (4. využitím Sch- warzovy nerovnosti definované kapitole 2.22) Zpětnou Fourierovou transformací získáme implusní charakteristiku přizpůsobeného filtru: h(t) = ∞ −∞ S∗ (f)e−j2πfT ej2πft df, (4.3, bude pro čitatel platit: ∞ −∞ H(f)S(f)e(j2πfT) df 2 ≤ ∞ −∞ |H(f)|2 df ∞ −∞ |S(f)|2 df. Poměr signál/šum tedy nezávisí tvaru signálu s(t), ale pouze jeho energii.Teorie rádiové komunikace 30 a střední výkon šumu dán integrálem této husototy: E[n2 (t)] = N0 2 ∞ −∞ |H(f)|2 df. . Zvolíme-li tedy časově posunuté bázové funkce ob- rácenou časovou osou impulsní charakteristiky přizpůsobených filtrů, maximalizujeme SNR jejich výstupu.18) Pro SNR pak tedy bude platit: SNR ≤ 2 N0 ∞ −∞ |S(f)|2 df