Stavové řízení elektrických pohonů

| Kategorie: Skripta  | Tento dokument chci!

Sestavování stavových rovnic. Stavová rovnice stejnosměrného motoru s permanentními magnety. Elektrický pohon dle obr. 1-1 sestává ze stejnosměrného motoru s permanentními magnetyve statoru, napájený do rotoru z tranzistorového měniče.

Vydal: FEKT VUT Brno Autor: UVEE - Jiří Skalický

Strana 61 z 67

Vámi hledaný text obsahuje tato stránku dokumentu který není autorem určen k veřejnému šíření.

Jak získat tento dokument?






Poznámky redaktora
8 0]; B=[167;0]; C=[0 1;1 0]; D=[0;0]; Mc=ctrb(A,B) n=rank(Mc) Q=[1 0;0 1]; R=[1]; [K,P,E]=lqr(A,B,Q,R) step((A-B*K),B,C,D) Výsledky: ]1690. Matice Q předepisuje relativní váhy odchylek stavových proměnných, matice určuje relativní váhu spotřeby energie. Parametry motoru jsou: VsCkgmJmHLR 88.7. 1.0 0010.95 32.7.5 Pro řešení LQR MATLABU lze užít příkazy: K=lqr(A,B,Q,R) nebo [K,P,E]=lqr(A,B,Q,R) K zpětnovazební matice P řešení Riccatiho rovnice E jsou póly uzavřené smyčky, tj.7446. 1. Riccatiho rovnice ustáleném stavu 0QBPBRPAPA =+−+ 1 rov.0=K ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ −− +− =⎥ ⎦ ⎤ ⎢ ⎣ ⎡ = i i 32.95 , 0710. 1.2,1.7-1 Stejnosměrný motor permanentními magnety řízen napětím kotvy, výstupem jsou otáčky.7.06445. 1xy klademe větší důraz výstup volíme 2211 .4 P řešením tzv. Příklad 1.00039.0,6,5. Pro soustavy jedním vstupem skalár: ]r=R Klademe-li důraz minimální spotřebu energie, volíme iiqr .0 2 ===Ω= Řešení MATLABU: % LQR ss. Vstupní vektor předpokládáme neomezený.7446. Zpětnovazební regulátor pak PBRK T1− = rov. Význam kvadratické formy QxxT si objasníme příkladu soustavy druhého řádu [ 2 222 2 111 2 1 22 11 21 0 0 xqxq x x q q xxT +=⎥ ⎦ ⎤ ⎢ ⎣ ⎡ ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ =Qxx rov.3 kde 11q váha pro stavovou proměnnou 22q váha pro stavovou proměnnou Je-li např.0 EP .FEKT VUT Brně Q jsou pozitivně definitní matice, technických úlohách diagonální.3 -480;28. mot PM A=[-83.00010. vlastní čísla matice )BKA