Napájení elektronických zařízení (přednášky)

| Kategorie: Skripta  | Tento dokument chci!

Elektronická zařízení potřebují ke své činnosti zdroj elektrické energie a to nejčastěji ve formě stejnosměrného DC výkonu. Postupem času zastarala klasická koncepce napájecích zdrojů proti napájenému zařízení tak mohutně, že disproporce byla nepřiměřená. Proto je možno cca od začátku 70-tých let 20. století pozorovat snahu i renomovaných firem tuto otázku řešit. U nás jsou tyto pokusy spojeny se jménem Ing.Kabeše, ve světě s tak proslulými firmami jako Hewlett§Packard a jiné. Každý napájecí zdroj lze podle Theveninovy věty nahradit sériovým spojením ideálního zdroje napětí a jeho ...

Vydal: FEKT VUT Brno Autor: UREL - Vlastislav Novotný, Pavel Vorel, Miroslav Patočka

Strana 35 z 139

Vámi hledaný text obsahuje tato stránku dokumentu který není autorem určen k veřejnému šíření.

Jak získat tento dokument?






Poznámky redaktora
a) Podle zamýšleného kmitočtu rozhodneme pro vhodný materiál jádra (kap.10-7 H/m, tzv.29) minimalizovat rozptylovou magnetickou vodivost ΛR. Tyto protichůdné požadavky tvar jádra bývají kritické nutno návrhu kompromisně vyřešit. rovnice (3. Nejlepšího výsledku dosáhneme toroidním jádrem velkou permeabilitou, velkým poměrem S/l a s oběma vinutími rozprostřenými rovnoměrně obvodu celého toroidu. Nestačí vysoká permeabilita µr, ale velký poměr S/l.1).4). Vhodné je také střídavé prokládání jednotlivých vrstev primárního sekundárního vinutí, roste však neúměrně pracnost (cena) klesá činitel plnění okna.19), platný ovšem pro daný kmitočet typ jádra. b) Vypočítáme maximum funkce časového integrálu primárního napětí (maximum, amplitudu mg.35 rozptylovou indukčnost. Pomoci nám tom může vztah typu (3. Blíže jádru umístíme vinutí menším počtem závitů.18) kap.2 zamyšlení vzduchových mezerách magnetických obvodech a zde vysvětlen jediný případ, kdy smysl mezeru transformátoru použít. několik toroidů malým průměrem tj. c) Velikost jádra prvním kroku volíme zkusmo nebo zkušenosti (viz. určena přibližně rovnicí: R R R l S 0 µ=Λ (3.4 Návrh napájecího transformátoru 3. obvodu jádra. toroidní jádro.34) µr relativní permeabilita materiálu, průřez jádra, střední délka siločáry.33) kde permeabilita vakua (µ0 4π. toku) známe totiž zadaný průběh primárního napětí u1(t). Tím ale vzniká problém malého okénka pro vinutí, což znemožňuje vinout vodiči velkým průřezem přenášet tak velké výkony. Rozptylovou vodivost dále zmenšíme způsobem vinutí.5) (což mimo jiné případ běžných napájecích transformátorů) použití mezery bezúčelné škodlivé, vede totiž vzrůstu magnetizačního proudu zvýšení rozptylových toků. Pro minimalizaci rozptylu jsou proto vhodná „baculatější“ jádra velkým malým (Často např. dána vztahem: l S r 0 µµ=Λ (3. 3.4.3).2. 3. důležitá velká mag. malým l paralelně pro dosažení velkého S).1 Algoritmus návrhu Při návrhu uplatníme poznatky všech předchozích kapitol. proto nutné podle (3. Poznámka transformátorům obecně (nejen síťovým): Všimněme si, celém předchozím výkladu není nikde zmínka použití vzduchové mezery mag. zde také ukázáno, že případě platnosti předpokladu zavedeného před vztahem (3. 3. Neznáme- . Jsou-li vinutí kostřičce, pak vineme na sebe, nikoliv vedle sebe přepážkou. magnetická konstanta), jsou ekvivalentní průřez délka rozptylových cest. vodivost jádra. Jádro musí mít tvar bez ostrých zlomů směru magnetického toku, nejlépe kruhový tvar, tj. konci kapitoly 4. Vhodný tvar jádra (typ) způsob vinutí (čili konstrukční uspořádání) volíme ohledem rozptyl (kap. 3. Protože nelze snížit permeabilitu vzduchu, nutno upravit geometrii jádra současně zabezpečit největší poměr permeability jádra permeabilitě okolního prostředí. Bifilární vinutí nejtěsnější vazbou není možno uskutečnit v případě rozdílných počtů závitů (což téměř vždy) případě nároků izolační pevnost mezi vinutími