Napájení elektronických zařízení (přednášky)

| Kategorie: Skripta  | Tento dokument chci!

Elektronická zařízení potřebují ke své činnosti zdroj elektrické energie a to nejčastěji ve formě stejnosměrného DC výkonu. Postupem času zastarala klasická koncepce napájecích zdrojů proti napájenému zařízení tak mohutně, že disproporce byla nepřiměřená. Proto je možno cca od začátku 70-tých let 20. století pozorovat snahu i renomovaných firem tuto otázku řešit. U nás jsou tyto pokusy spojeny se jménem Ing.Kabeše, ve světě s tak proslulými firmami jako Hewlett§Packard a jiné. Každý napájecí zdroj lze podle Theveninovy věty nahradit sériovým spojením ideálního zdroje napětí a jeho ...

Vydal: FEKT VUT Brno Autor: UREL - Vlastislav Novotný, Pavel Vorel, Miroslav Patočka

Strana 30 z 139

Vámi hledaný text obsahuje tato stránku dokumentu který není autorem určen k veřejnému šíření.

Jak získat tento dokument?






Poznámky redaktora
2 Ztráty reálném transformátoru 3. složku, periodické kmitočtem ale jinak libovolného tvaru, tj. Kromě toho max. Jouleovy ztráty jsou proto úměrné kvadrátu efektivní hodnoty procházejícího proudu jsou dány vztahem: 2 22 2 11 efefR IRIRP (3.6), lze úměru (3. Z hlediska těchto ztrát primární sekundární vinutí chovají jako lineární odpory R2. Ze vztahu (3. vztah (3. Pak maximum časového integrálu takového primárního napětí (maximum toku, amplituda toku) zcela jistě konečné nepřímo úměrné kmitočtu. Uvažujme, napětí neobsahuje ss. Jak bylo vysvětleno kap.17) lze proto doplnit: OMAX SSfP ⋅⋅≈ (3.18) Pozn.18) vidíme, zvyšování pracovního kmitočtu umožňuje přenášet větší výkon při zachování rozměrů jádra. Omezení představují hysterezní vířivé ztráty jádře dále rozptylová indukčnost. Lze pak přenášet n-krát větší proud výkon (napětí nezměnila, pouze vzrostl kmitočet). Je tedy zřejmé, maximální výkon bude přímo úměrný ploše okénka SO, protože čím větší, tím tlustší vodiče můžeme použít tím větší proudy (výkon) možno transformovat. 3.1 Jouleovy ztráty vinutí Jouleovy (ohmické) ztráty vznikají odporu vinutí průchodem proudu.17) Zamyslíme-li nad vztahem (3. Díky tomu lze daným průřezem mag. výkon přímo úměrný průřezu mag. Podrobněji se s těmito problémy seznámíme následujících kapitolách. maximum funkce B(t) přímo úměrná maximu funkce časového integrálu primárního napětí.6), proto mohou být opět tlustší vodiče. 3.2. Pak stejném poměru n můžeme zvýšit průřez vodičů, aniž bychom báli, vinutí nevejde okénka.: Pro jádra plechů křemíkové oceli lze pomocí vztahu (3. Vztah (3. obvodu protože čím větší, tím méně závitů potřebujeme pro dané sycení, viz. Kmitočet však nelze reálného transformátoru zvyšovat nade všechny meze. Má-li pak vinutí vtěsnat okénka jádra, nelze zvyšovat průřez vodiče tím proudovou zatížitelnost libovolně.20) . Čili lze napsat: OMAX SSP (3. libovolného obsahu vyšších harmonických. obvodu průřezem okénka SO realizovat transformátor schopný přenést jen určitý omezený výkon. závitů N1, abychom nepřekročili maximální sycení jádra. základem filosofie všech spínaných zdrojů (měničů) s transformátorem.18), uvažováním přímé úměry mezi odvodit známý vztah: 2 SPMAX = cm2 ] (3. tím větší, čím větší maximum amplituda časového integrálu primárního napětí čím menší průřez má jádro. Maximální hodnota sycení tj. Čili max. výkon přímo úměrný kmitočtu.19) Ten předpokládá max.6) také n-krát méně závitů N1, aby sycení zůstalo stejné.30 že musíme volit určitý počet prim. sycení proudovou hustotu asi 2,5 A/mm2 a kmitočet Hz. znamená, že zvýšíme-li kmitočet n-krát při zachování amplitudy tvaru napětí, klesne maximum integrálu n-krát a bude moci být dle (3.1, nutí nás tyto ztráty snižovat odpor vinutí zvyšováním průřezu vodičů způsobují tak nutné zvyšování plochy okénka jádra zvětšování celého transformátoru. týká se opravdu jen jader, protože při jeho odvození byla uvažována konkrétní závislost pro tato jádra.17) ještě dále doplnit