Numerické modelování elektromagnetických polí se s rozvojem výpočetní techniky a neustále rostoucí výkonností počítačů stalo spolu s optimalizačními technikami nepostradatelnou složkou návrhu konstrukcí nových elektrotechnických a elektronickýchzařízení i zařízení z ostatních oblastí technické praxe. Numerické modelování je také bezesporu nedílnou součástí komplexních analýz chování časoprostorových polí, které jsou důležité pro posouzení nových požadavků na kvalitu zařízení jako je elektromagnetická kompatibilita. Složité problémy řešené v současné technické praxi nelze zvládnout ve většině případů jinými prostředky než pomocí vhodných numerických metod za použití výkonných počítačů.
3.1a).
Vnitřní vnější úloha
Při výpočtu pole uvnitř oblasti, jejíž hranici jsou zadané okrajové podmínky, např. úloze
Neumannově jednoznačně určen potenciál jen tehdy, jestliže části hranice určen i
potenciál. známé hraniční siločáře gradφ /∂n 0. Skutečné okrajové
podmínky mohou být obecně složitější, neboť mohou zahrnovat kombinace potenciálu,
normálové derivace potenciálu, ale jejich integrály, jak uvidíme dále.Modelování elektromagnetických polí 23
indukce Dn2 Dn1 nebo siločáře ∂φ/∂n= Potenciál rozhraní
dielektrik bude vždy spojitý. 3. intenzity hranici úloha nazývá Neumannova. elektrodě bude mít potenciál předepsanou hodnotu φe.1b) symetrický koaxiální kabel, jehož pole třeba nalézt. Rozměr
úlohy lze ovlivnit vhodnou volbou souřadnic.
4. Problém
se převede problém vakua pole uvnitř oblasti vypočte Coulombova zákona.1c).
Formulace elektrostatické úlohy diferenciální rovnicí
Jako příklad elektrostatického problému uvažujme úlohu podle Obr. Vystupují-li obě podmínky, mluvíme smíšené úloze.1b), mluvíme vnitřní úloze; počítáme-li pole neomezené oblasti, jak
je tomu Obr.
φ1 φ2
5. potenciální pole dvouvodičového vedení rovinná, tj. Podle počtu
souřadnic rozeznáváme úlohy jedno-, dvou- trojrozměrné. vnitřních bodech obecně nehomogenní oblasti splňuje potenciálová funkce Poissonovu
nebo Laplaceovu rovnici
div gradε −
2. rozhraní dvou dielektrik mezi oblastmi Ω1, potenciál mění spojitě, tj. 3. Jako
příklad Obr.
Poznamenejme ještě, pokud úloze zadán pouze potenciál hranice, nazývá úloha
Dirichletova, při zadání /∂n tj.
. Toto třídění zavádí
v matematické fyzice, není však dostačující pro inženýrské výpočty. pole bodového náboje nebo vodivé
nabité koule úloha sférických souřadnicích, ale kartézských.
3. Zkráceně budeme značit úlohy
1D, 3D.
Vzhledem symetrii problému postačí počítat pole jednom kvadrantu podle Obr. Toto třídění důležité zejména
v numerických úlohách, nichž některé jsou vhodné pro řešení vnitřních vnějších úloh, jiné
pouze řešení úloh vnitřních.
• třeba nalézt takové rozložení hustoty volného vázaného náboje elektrodách na
rozhraní mezi dielektriky σ’, které zajistí výše uvedené okrajové podmínky.1a), mluvíme vnější úloze. 3. Tento požadavek ekvivalentní podmínce spojitosti tečné složky vektoru E. úloha. Např. 3. Např.
První postup vede řešení parciálních diferenciálních rovnic, druhý integrální rovnice.
Úlohy mohou významně zjednodušit, vykazují-li geometrickou symetrii.
v úloze podle Obr. intenzita
tečná ploše, proto zde /∂n Tento postup zřejmě opačný použití principu
zrcadlení, kde plocha předepsanou hodnotou odstraněna zavedením zrcadlového
obrazu.
Symetrickou úlohu lze někdy zjednodušit využitím platných okrajových podmínek.
Okrajovou podmínkou zde hranici S1, S2, S4. Když
vyloučíme bodové náboje, musí hledaná potenciálová funkce splňovat podmínky, které na
základě dosavadních poznatků můžeme formulovat takto:
1. Tak tomu
v případě rovinné nebo rotační symetrie, kdy sníží počet proměnných