V této úvodní kapitole se pokusíme nastínit některé metodologické aspekty stavby fyziky a jejího začlenění do kontextu ostatní přírodovědy a vědeckého poznání vůbec. Tyto metodologické poznámky mohou být zajímavé např. pro studenty a zájemce nefyzikálních profesí, kteří si chtějí udělat ucelený obraz o fyzikálních aspektech zkoumání přírody.
.
Kroneckerův delta-symbol δi
k δi
k=1 pro i=k, δi
k=0 pro iąk jeho stopa δi
i= komponenty těchto
tenzorů jsou stejné všech souřadnicových soustavách STR. "zvedání" "spouštění"
indexů, uskutečňuje přes metrický tenzor, STR tedy přes Minkowského tenzor ηik. Např.1. Při použité Minkowskiho metrice platí jednoduché pravidlo: při zvedání a
spouštění prostorových indexů (1,2,3) hodnoty komponent nemění, při zvedání spouštění
časového indexu (o) mění znaménko této složky. čtyřvektoru) vzniká tenzor 3.,ir, které při
transformaci souřadnicové soustavy xi→x'i ai
kxk transformují jako součin r-souřadnic :
T'i1,i2,.řádu zaujímají zvláštní postavení Minkowskiho tenzor ηik ηik, rovněž tzv.Tlm.
Mezi tenzory 2.řádu. ai2
k2
.řádu.htm (27 38) [15.
Máme-li skalární, vektorové nebo tenzorové veličiny definovány nejen jednom bodě, ale každém
bodě dané oblasti prostoru (zde prostoročasu), mluvíme skalárních, vektorových tenzorových
polích..2008 12:14:32]
.,kr .řádu -
Levi-Civitův tenzor eiklm antisymetrický všech indexech, jehož složka e0123 ostatní
nenulové složky (tj.řádu Tijk Aij.cz/Gravitace1-6. Pomocí tenzorového součinu vznikají tenzory vyšších řádů,
např. Takové tenzory nazývají izotropní.ηkm.
Analogicky kovariantní smíšené tenzory viz obecnou definici §3.
Aritmetické operace mezi tenzory (složkami tenzorů) řídí jednoduchými přirozenými pravidly
tenzorové algebry [214],[163],[33].. ty, nichž jsou všechny čtyři indexy různé) jsou rovny nebo podle toho,
zda daná posloupnost indexů i,k,l,m posloupnosti 0,1,2,3 utvořena sudým nebo lichým počtem
permutací.Ullmann V. Tk1,k2,. tenzorovém počtu rovněž často používá jednotkový izotropní tenzor 4.řádu,
vektor tenzorem 1.ηmk δi
k pro každý vektor δk
iAi= Ak; tenzor δk
i tedy charakter jednotkového 4-
tenzoru 2. Naopak, pomocí operace "zúžení", spočívající sumaci přes dvojici
indexů daném tenzoru, vznikají tenzory nižších řádů. Tik
=ηimTm
k ηil.: Gravitace její místo fyzice
V prostoročase dále pomocí svých transformačních vlastností zavádějí složitější veličiny -
tenzory. air
kr
.řádu Aij 1.
http://astronuklfyzika. součinem tenzoru 2.,ir ai1
k1
.. tenzoru čtvrtého řádu Aiklm zúžením
vznikne tenzor druhého řádu Aik Aikl
l; zúžením tenzoru 2...řádu Aik dostaneme skalár Ai
i A°o
+A1
1+A2
2+A3
3 který nazývá stopou tenzoru Aik.Bk ;
analogicky pro smíšené tenzory.10. Např..
Platí ηim. Skalár tenzorem 0. Kontravariantním 4-tenzorem r-tého řádu rozumí souhrn veličin Ti1,i2,. Pravidla operace vektorové analýzy, tak užitečné fyzice pole kontinua, přirozené
přenést zobecnit čtyřrozměrný prostoročas.řádu (tj..
Souvislost mezi kovariantními kontravariantními složkami tenzorů, tj