V této úvodní kapitole se pokusíme nastínit některé metodologické aspekty stavby fyziky a jejího začlenění do kontextu ostatní přírodovědy a vědeckého poznání vůbec. Tyto metodologické poznámky mohou být zajímavé např. pro studenty a zájemce nefyzikálních profesí, kteří si chtějí udělat ucelený obraz o fyzikálních aspektech zkoumání přírody.
.
Souvislost mezi kovariantními kontravariantními složkami tenzorů, tj. tenzorovém počtu rovněž často používá jednotkový izotropní tenzor 4.řádu,
vektor tenzorem 1.
Platí ηim.
Mezi tenzory 2.. tenzoru čtvrtého řádu Aiklm zúžením
vznikne tenzor druhého řádu Aik Aikl
l; zúžením tenzoru 2. air
kr
.,kr . "zvedání" "spouštění"
indexů, uskutečňuje přes metrický tenzor, STR tedy přes Minkowského tenzor ηik.10.řádu -
Levi-Civitův tenzor eiklm antisymetrický všech indexech, jehož složka e0123 ostatní
nenulové složky (tj.Ullmann V. Např.Bk ;
analogicky pro smíšené tenzory. čtyřvektoru) vzniká tenzor 3.
Máme-li skalární, vektorové nebo tenzorové veličiny definovány nejen jednom bodě, ale každém
bodě dané oblasti prostoru (zde prostoročasu), mluvíme skalárních, vektorových tenzorových
polích.,ir ai1
k1
. ai2
k2
.: Gravitace její místo fyzice
V prostoročase dále pomocí svých transformačních vlastností zavádějí složitější veličiny -
tenzory.1.řádu Tijk Aij.ηkm.řádu.řádu.
Aritmetické operace mezi tenzory (složkami tenzorů) řídí jednoduchými přirozenými pravidly
tenzorové algebry [214],[163],[33]. Pomocí tenzorového součinu vznikají tenzory vyšších řádů,
např. ty, nichž jsou všechny čtyři indexy různé) jsou rovny nebo podle toho,
zda daná posloupnost indexů i,k,l,m posloupnosti 0,1,2,3 utvořena sudým nebo lichým počtem
permutací...,ir, které při
transformaci souřadnicové soustavy xi→x'i ai
kxk transformují jako součin r-souřadnic :
T'i1,i2,. součinem tenzoru 2..2008 12:14:32]
..htm (27 38) [15. Skalár tenzorem 0.cz/Gravitace1-6.řádu Aik dostaneme skalár Ai
i A°o
+A1
1+A2
2+A3
3 který nazývá stopou tenzoru Aik.
Analogicky kovariantní smíšené tenzory viz obecnou definici §3.ηmk δi
k pro každý vektor δk
iAi= Ak; tenzor δk
i tedy charakter jednotkového 4-
tenzoru 2.Tlm.
http://astronuklfyzika.. Kontravariantním 4-tenzorem r-tého řádu rozumí souhrn veličin Ti1,i2,.
Kroneckerův delta-symbol δi
k δi
k=1 pro i=k, δi
k=0 pro iąk jeho stopa δi
i= komponenty těchto
tenzorů jsou stejné všech souřadnicových soustavách STR.řádu Aij 1.řádu zaujímají zvláštní postavení Minkowskiho tenzor ηik ηik, rovněž tzv.. Takové tenzory nazývají izotropní.řádu (tj. Např. Tk1,k2,. Při použité Minkowskiho metrice platí jednoduché pravidlo: při zvedání a
spouštění prostorových indexů (1,2,3) hodnoty komponent nemění, při zvedání spouštění
časového indexu (o) mění znaménko této složky. Pravidla operace vektorové analýzy, tak užitečné fyzice pole kontinua, přirozené
přenést zobecnit čtyřrozměrný prostoročas. Tik
=ηimTm
k ηil. Naopak, pomocí operace "zúžení", spočívající sumaci přes dvojici
indexů daném tenzoru, vznikají tenzory nižších řádů