V této úvodní kapitole se pokusíme nastínit některé metodologické aspekty stavby fyziky a jejího začlenění do kontextu ostatní přírodovědy a vědeckého poznání vůbec. Tyto metodologické poznámky mohou být zajímavé např. pro studenty a zájemce nefyzikálních profesí, kteří si chtějí udělat ucelený obraz o fyzikálních aspektech zkoumání přírody.
42) (1.Ullmann V.htm 17) [15.∂2f/∂t2 =
div (1/c).44)
kde f(r,t) libovolná skalární funkce místa času, příslušné elektromagnetické pole nezmění
(E→E'=E, B→B'=B).39), vyjádřené dosazením (1.∂f/∂t. Lorentzova kalibrační
podmínka:
grad (1/c) ∂ϕ/∂t (1. Tato určitá "svoboda" volbě poteneiálů umožňuje vybrat tvar potenciálů
(provést jejich "kalibraci") tak, aby bylo možná nejvýhodnější pro daný problém.
Jelikož intenzity polí závisejí pouze derivacích potenciálů, nejsou tyto potenciály určeny
jednoznačně, daným polím mohou odpovídat různé hodnoty potenciálů.
Maxwellovy rovnice (1. Při této kalibraci nabývají Maxwellovy rovnice, vyjádřené pomocí potenciálů,
separovaný symetrický tvar d'Alembertových rovnic
(1.45)
(tato podmínka může být splněna transformací (1.cz/Gravitace1-5.46a)
(1.43)
Zavedením takového elektrického potenciálu magnetického vektorového potenciálu jsou
obě poslední Maxwellovy rovnice splněny identicky. Např.46b)
http://astronuklfyzika.10.42)
B rot (1. cejchovací (kalibrační) transformaci potenciálů
A grad (1/c)∂f/∂t (1.
Obecně, magnetické pole rot nezmění, jestliže přičteme gradient libovolné funkce (rot
grad 0); aby přitom nezměnilo ani elektrické pole (1. lze přičíst
libovolný konstantní vektor libovolnou konstantu, aniž změní hodnoty intenzit B.44) funkcí splňující rovnici (1/c2).∂ϕ/∂t).43) pomocí potenciálů, mají
obecně značně složitý tvar
Tyto rovnice značně zjednoduší, předepíše-li pro potenciály tzv.2008 12:14:17]
.: Gravitace její místo fyzice
E grad (1/c) ∂A/∂t (1.42), zároveň třeba potenciálu ϕ
přidat člen -(1/c).38) (1. Provedeme-li tedy tzv