Fyzika - fundamentální přírodní věda

| Kategorie: Skripta  | Tento dokument chci!

V této úvodní kapitole se pokusíme nastínit některé metodologické aspekty stavby fyziky a jejího začlenění do kontextu ostatní přírodovědy a vědeckého poznání vůbec. Tyto metodologické poznámky mohou být zajímavé např. pro studenty a zájemce nefyzikálních profesí, kteří si chtějí udělat ucelený obraz o fyzikálních aspektech zkoumání přírody.

Vydal: - Neznámý vydavatel Autor: Vojtěch Ullmann

Strana 325 z 673

Vámi hledaný text obsahuje tato stránku dokumentu který není autorem určen k veřejnému šíření.

Jak získat tento dokument?






Poznámky redaktora
1 "Geometrie topologie prostoročasu") celé číslo udávající počet parametrů, kterými jednoznačně definována poloha jednotlivých bodů tohoto útvaru.asučUllmann V.cz/Gravitace3-3.htm (19 25) [15. Tělesa jako krychle, válec, jehlan, koule, stejně jako celý obvyklý prostor kolem nás, mají dimenzi D=3, protože poloha každého bodu nich jednoznačně určena souřadnicemi.: Geometrie topologie prostoro q Samopodobnost (self-similarita) Fraktaly jsou ivariantní vůči určitým transformacím spočívajícím změně měřítka. Např. Fraktální dimenze Hausdorffova dimenze Na dimenzi však můžeme dívat jiného hlediska než topologického hlediska metrického, které modeluje proces měření daného geometrického útvaru stanovení jeho délky, plochy, http://astronuklfyzika. Lze říci, sobě-podobný útvar vypadá stejně, něj díváme v jakémkoli měřítku zvětšení. Takovéto sobě-podobné množiny vznikají opakováním "sebe sama" při určité transformaci jako změna měřítka, rotace posunutí. Soběpodobné množiny jsou invariantní vůči změně měřítka při libovolném zvětšení či zmenšení vypadají podobně. Takovýto princip opakování podobných tvarů ve zmenšené zvětšené podobě můžeme často pozorovat přírodě, kde mnohé složité komplexní útvary vytvářejí opakováním jednoduchých struktur pravidel. Lze říci, sobě-podobná množina vzniká "sama sebe" vzniká opakováním téhož základního motivu. Cantorovo diskontinuum skládá svých opakujících přesných kopií, zmenšených 1/3. Hausdorffova dimenze (zvaná též fraktální dimenze či podobnostní dimenze viz níže) liší dimenze topogické většinou neceločíselná. Fraktální geometrie studuje útvary, nichž stejný nebo podobný tvar opakuje stále menším a menším měřítku. Z matematického hlediska sobě-podobná množina n-dimenzionálního Eukleidova prostoru taková množina, pro kterou existuje konečně mnoho tzv.. Můžeme zjednodušeně říci, fraktal geometrický útvar (či množina), který skládá určitého počtu svých vhodně zmenšených "kopií". nejjednodušším případě určitá struktura soběpodobná, tom smyslu, lze rozdělit několik částí, kde každá těchto částí zmenšená kopie celku. Každá hladká plocha - rovina, trojúhelník, kruh, kulová válcová plocha, dimenzi D=2, neboť poloha bodu zde musí být definována pomocí dvou souřadnic. Míra rozdílu mezi fraktální topologickou dimenzí udává "úroveň členitosti" daného útvaru. Přímka, úsečka, kružnice, parabola, sinusovka každá jiná křivka dimenzi D=1 (je jednorozměrná), neboť polohu bodu lze parametrizovat jediným číslem (souřadnicí). q Hausdorffova dimenze Fraktal množina, jejíž tzv., (jsou taková zobrazení En do En, která zmenšují vzdálenost mezi dvěma body ležícími En) takových, vznikne jako sjednocení i=1Čn φi (A).10. Struktury tohoto druhu jsou velice efektivní hlediska směstnání plochy velkým povrchem malého objemu. např. růst větví na stromech, korálové útesy moři, sněhové vločky, zvětralá skaliska, větvení cévního systému v těle velkých cév aortálních nejjemnější kapilární. Topologická dimenze Obvyklá dimenze počet rozměrů objektu, zvaná též topologická dimenze (viz §3. Analogicky můžeme formálně konstruovat útvary vyššími dimenzemi, když nimi nemáme přímé zkušenosti neumíme si je představit; našem výkladu často používáme 4-rozměrný prostoročas.2008 12:14:14] .. kontrahujících zobrazení φ1, φ2,