V této úvodní kapitole se pokusíme nastínit některé metodologické aspekty stavby fyziky a jejího začlenění do kontextu ostatní přírodovědy a vědeckého poznání vůbec. Tyto metodologické poznámky mohou být zajímavé např. pro studenty a zájemce nefyzikálních profesí, kteří si chtějí udělat ucelený obraz o fyzikálních aspektech zkoumání přírody.
Dále Mandelbrod analyzoval doplnil tzv. r.Cantorovi, který m. Zjistil, stanovení délky takového pobřeží podstatně závisí měřítku, tj. Fraktální geometrie snaží zachytit všechny jamky, hrbolky,
pokřivení, spletení, vyskytující přírodních útvarů. Navzdory této bizarní složitosti fraktální
geometrie vyjevuje určité zákonitosti tzv.
Z historie fraktalů
Kořeny těchto koncepcí sahají svým způsobem zakladateli teorie množin G.ε1−DR, kde konstanta určitá "běžná" délka konkrétního pobřeží konstanta (zvaná
Richardsonova konstanta) charakterizuje členitost daného pobřeží.
Vlastnosti fraktalů
Fraktální útvary (fraktaly) mají dvě základní pozoruhodné vlastnosti (které zároveň mohou sloužit
jako defnice fraktalů):
http://astronuklfyzika.2008 12:14:14]
. Rozpracováním zobecněním těchto poznatků dospěl Mandelbrod pojmu fraktal.εDR něhož plynulo, lze považovat Hausdorffovu
míru Hausdorffovu dimenzi množiny bodů popisujících pobřeží.
Hlavním zakladatelem novodobé fraktální geometrie však Benoit Mandelbrot, který odhalil nové a
neočekávané strukturní vlastnosti geometricky složitých útvarů množin anomální dimenzi periodicitu
struktur různých měřítcích.10. Cantor však dokázal, těchto "zrnek prachu" přesně tolik,
kolik bylo bodů původní úsečce (!) možno vzájemně jednoznačně přiřadit. větším měřítku, mapě, nevidíme všechny skutečné nepravidelnosti,
zákruty, výběžky další členitosti pobřeží, které bude větší měřítko "překlenovat" naměříme délku kratší.htm (18 25) [15.cz/Gravitace3-3. soběpodobnosti, kdy každá část objektu podobná
celku (viz níže) přírodě často vyskytují větvící fraktální struktury.1 "geometrie topologie
prostoročasu", pasáž "Nekonečno prostoru čase". Část je, jistém smyslu, stejně
početná jako celek srovnejme diskusí pojetí nekonečna matematice §3.N(ε). Tyto své poznatky dal šťastnou shodou okolností do
souvislosti empirickými údaji měření délky mořských pobřeží (konkrétně pobřeží ostrova Korsiky),
shromážděnými L. Mandelbrot 60. Poskládáme-li všechny vynechané třetinové úseky z
předchozí konstrukce nad sebe stupňů výšce stejné jako šířka), vznikne tzv.asučUllmann V. Pro délku pobřeží měřenou tyčí délky stanovil Richardson empirickou
závislost L(ε) K. na
"délce tyče" níž měření provádíme.1883
sestrojil svéráznou čistě spekulativní množinu tzv. Pozoroval, střídající časové intervaly správného chybného přenosu objevují různých
časových škálách jakási "sobě-podobnost" (self-similarity).N(ε).
Další útvary neobvyklé vnitřní struktury, jako Kochova vločka nebo Sierpiňského koberec, budou diskutovány
níže souvislosti fraktální geometrií Hausdorffovou dimenzí. Cantorovo diskontinuum. Zbude pak množina izolovaných bodů, Cantorovo
diskontinuum neboli Cantorův prach. Paradoxní vlastnosti těchto uměle
zkonstruovaných objektů struktur tehdejším matematikům, "odchovaným" klasickou algebrou a
matematickou analýzou, zdály být natolik bizarní odporující intuici zdravému rozumu, označovali jakási
zvrácená "matematická monstra".
Juliovy množiny.j. Pro různá pobřeží hodnota pohybovala v
rozmezí cca 1,05-1,3; průměrnou hodnotu Richardsonovy konstanty bere 1,26. Součet délek všech vypuštěných intervalů přesně roven Cantorův prach
je první pohled zanedbatelnou skupinkou bodů.letech zabýval analýzou šumů chyb při elektronickém přenosu
signálů. Richardsonův efekt).: Geometrie topologie prostoro
složitější detaily objevují. Toto
"schodiště" má, navzdory své složité fraktální struktuře nekonečně mnoha stupňů, konečnou délku rovnou 2. V
menších menších měřítcích podrobnějšího pohledu musíme při měření krátkou tyčí kopírovat čím dál menší
členitosti, takže zjemňujícím měřítkem bude zjištěná délka pobřeží čím dál větší teoreticky do
nekonečna (tzv.Richardsonem. ďáblovo schodiště. Cantorovo diskontinuum vzniká z
úsečky jednotkové délky tak, nejprve odstraníme prostřední třetinu, pak zbylých dvou třetinových úsečkách
vždy opět prostřední třetiny atd.εDR−1
= ε.εDR−1
= N(ε).
Rovnici tak upravil tvar L(ε). Ukazuje se, fraktální
geometrie vhodným matematickým prostředkem pro popis struktur dynamiky přírodních dějů., nekonečna. Mandelbrod analyzoval
Richardsonův empirický vzorec zavedením dalšího parametru počtu proložení měřící tyče N(ε), takže L(ε) ε