V knize je vyložena obecné theorie elektrických pohonů, jakož i některé části z řízení automatisovaných pohonů. Je určena jednak pro posluchače odborných škol specialisující se v oborech elektrické stroje, elektrické přístroje, elektrická zařízení, automatika a telemechanika, elektrická výzbroj letadel a motorových vozidel a pod., jednak pro inženýry a techniky, projektanty elektrických pohonů a všechny, kdož pracují v provozech, kde se používá elektrického pohonu.
při brzdění
až úplného zastavení, kdy
i doba brzdění
rM ln
^poč
(157)
P řík 16. Charakteristiky f(ť) <p(í)
při dynamickém brzdění.
Ěešení.
pri
=— 582 ot/min
I 26,1 A
Obr. 171) určí
An. Motor pře
vede stavu dynamického brz
dění při D0&= nvo6 =
= 2330 ot/min. Přídavný odpor, zařa
zený obvodu kotvy
c erípoč
■R* =
0,09 2330
%. 172.
Máme vypočíst sestrojit
křivky přechodného stavu =
— f(t) <p(ť) pro derivační
motor, jehož štítkové hodnoty
jsou udány předešlém příkladě. Vrceni ánspři dynamickém brzdění. Budiž zde upozorněno to, že
časová konstanta dána hodnotou celkového odporu kotvového obvodu
motoru při dynamickém brz-
f
>
Obr. 171. Tak př.
Zatěžovací proud 0,5 n=
= 26,1 A.
rsLi
dění. 52,2
— 0,274 1,761 £2
Z charakteristiky dynamické
ho brzdění (obr.
Elektromechanická časová kon
stanta
GD*R
rM
0,5
375 CgCjfá
2,035
375 0,09 0,089
= 0,336 s
Doba brzdění podle (157) (I1 po6 104,4 A)
h= ln
-^poč
= 0,336 I04’t ft+126,1 0,336 0,541 s
26,1
186
.Pro theoreticky •Prakticky lže předpoklá
dat, brzdění skončí dobu rM.
Dobu brzdění můžeme též
určit, vyjdem e-li rovnice
(152)