Pojem dynamické jevy v elektrických zařízeních úzce souvisí s pojmem přechodné jevy, neboť dynamika vždy souvisí s energetickou změnou sledované soustavy, resp. jejího prvku (popř. subsystému). Pokud chceme studovat tyto jevy v elektrických zařízeních, tak studovaným systémem bude nutně elektrizační soustava, která je složena z jednotlivých, vzájemně propojených článků. Elektrizační soustavu řadíme do kategorie rozlehlých systémů kybernetického typu [1] a přijejím popisu chápeme tuto soustavu jako dynamický systém, tj. systém ve kterém je okamžitá hodnota vnitřních veličin závislá na okamžitých hodnotách stavu systému v daném časovém okamžiku. Přitom stav systému pojímáme jako soubor vnitřních veličin systému, které jsou závislé na časovém vývoji systému. Jinými slovy řečeno, na počátečních podmínkách, pokud systém (subsystém) je popsán diferenciálními rovnicemi.
35)
kde
aε úhlové zrychlení základního členu.33)
kde výraz
red
nr
r
kp
p
appparra IrmII =++ ∑
−=
=
=
=
1
1 1
222
μμ (4. Odečteme-li základní rotující člen, počet ostatních rotujících členů n-1.34)
nazýváme redukovaným momentem setrvačnosti přesněji momentem setrvačnosti
redukovaným zvolený základní člen.2.30) (4.36)
a dále
.35) dostaneme
aared
nr
r
kp
p
apappararaa IrFMM
dt
dE
εωμωμωω =++= ∑
−=
=
=
=
1
1 1
(4.29) dostáváme
∑∑
=
=
−=
=
++=
kp
p
pp
nr
r
rraa vmIIE
1
2
1
1
22
2
1
2
1
2
1
ωω (4.
Derivujeme-li rovnici kinetické energie celé soustavy (4.30)
konst
r
v
rvv
a
p
apapaapap ==⇒==
ω
μμωμ (4.33) podle času
aared
a
ared I
dt
d
I
dt
dE
εω
ω
ω 2
2
1
(4.
Jestliže nyní dosadíme převodové vztahy (4.32)
a dosazení převodových vztahů
22
1
1 1
222
1
222
1
1
222
2
1
2
1
2
1
2
1
2
1
areda
nr
r
kp
p
appparra
kp
p
appap
nr
r
araraa IrmIIrmIIE ωωμμμωμωω =⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
++=++= ∑∑∑
−=
=
=
=
=
=
==
=
(4.
Základní člen vázán ostatním členům převody apar pro něž platí vztahy
konst
a
r
ararar ==⇒=
ω
ω
μμωω (4.31) základní pohybové rovnice (4.45
4.28)
a porovnáme výsledek rovnicí (4.31)
Ve vztahu pro převod mezi základním rotujícím členem p-tým členem posouvajícím značí
r poloměr otáčení páky, níž odvozen pohyb posouvajícího členu.1 Pohyb při redukci mechanismu rotující člen
Veličiny příslušející základnímu členu označíme indexem a
aω
dt
d a
a
ω
ε aM
veličiny příslušné ostatním rotujícím členům indexy 〉−〈∈ 1,1 nr
rω rM
a veličiny příslušné posouvajícím členům indexy 〉〈∈ ,1
pv pF
přičemž
Ia,, jsou hmotnostní momenty setrvačnosti osám rotací příslušných členů, jsou
hmotnosti posouvajících členů. Počet posouvajících členů počet rotujících členů je
n.
Jestliže nyní sestavíme rovnici kinetické energie celé sestavy (podle 4