Učebnice seznamuje nejdříve se základy kreslení elektrotechnických schémat a dále probírá fyzikální základy elektrotechniky, vlastnosti a charakteristiky elektrických přístrojů a strojů a vysvětluje výrobu a rozvod elektrické energie včetně jejího využití v oblasti elektrické trakce, tepelné techniky a osvětlování. Je určena žákům 2. a 3. ročníků elektrotechnických učebních a studijních oborů středních odborných učilišť.
T odnoty konstanty výstupní práce H-' provozních teplot
některých prvků
Prvek
A
A 2
w .
/ (Hz; m)
kde rychlost světla vakuu (300. 106 ’),
A vlnová délka.
Ze vztahu (3) patrné, nejvčtši vliv hustotu proudu mají teplota
a výstupní práce.3 10" 4,34
thorium 0,7 10f’ 3,38
thoriovaný olfram 0,03. 16. 10ft 2,63 1200
ccsiovaný olfram 1011 0,72
Světelná emise (fotoemise) vznikne dopadu světla povrch kovu.Tepelná emise spočívá uvolňování elektronů rozžhaveného kovu.
59
. Pro
hustotu proudu tepelné emise platí empirický vztah
a yíS2 e~"r"/w (3)
kde konstanta tepelné emise daného kovu,
teplota,
Wc výstupní práce,
k Boltzmannova konstanta (1,38 10~3 _1).
eV
Provozní teplota
K
w olfram 0,6 10* 4,52 2500
m olybden 0,5 106 4,15 2000
tantal 0,6 10ft 4,1 19(X)
uhlík 0. Proto při výběru materiálů pro tepelnou emisi dáváme
přednost kovům malou výstupní prací velkou provozní teplotou.
H odnoty /l, WKa provozní teploty kovů jsou uvedeny tab.
Aby elektron vyletěl povrchu kovu, musí pohlcená světelná energie
fotonu rovnat výstupní práci kovu nebo musí být větší
W{ (J; Hz) (4)
kde Planckova konstanta (6,625 10“ s),
/ kmitočet světla