Kniha je úvodem do metod praktického modelování, analýzy, návrhu a optimalizace elektrotechnických zařízeni na číslicovém počítači. Výklad je doprovázen jednoduchými názornými příklady řešených úloh z různých odvětví elektrotechniky.Kniha je určena inženýrům a technikům, kteří se zabývají moderním návrhem elektrotechnických zařízení.
, m
(8.. Jestliže platí (8. Tuto nevýhodu odstraňují spirální algoritmy, mezi které patří
následující algoritmus. Metody prvního řádu
pro minimalizaci maximální odchylky bez vazebních podmínek
Metody prvního řádu pro minimalizaci maximální odchylky
f(x) max (wjltt )
i ,.58), (8.59), (8.64) používáme
výrazy
kde jsou váhové koeficienty jsou hodnoty funkce aproximované mo
e,
(x* b
0 f(x*) f(x) 2
x* a(X l)b (8.61), pokládáme Jestliže
platí (8.2.66)
461
.65)
i —1
kde
Vi(x (wřb y(Pi, x)|f 2
8.. Při neúspěšném iteračním kroku, kdy f(x*) ^
Si f(x), vektor nemění.64)
Parametry Ajsou vázány vztahem
1 fe‘(t _1)A(1 _1)b
—= ------ ;------ 7T------ A
a b'(1 b
n
f ř,x)|)k (8.60) (8.62), pokládáme —1. Jestliže platí (8.60) hodnotu parametru třeba řešit soustavu
lineárních rovnic.
Metody prvního řádu pro minimalizaci součtu čtverců odchylek bez vazebních
podmínek lze zobecnit pro případ, účelová funkce tvar
kde tomto případě však rovnicích (8.63), pokládáme max (cj, min (c0, c2)),
kde
kde obvykle 0,10 0,50.
Změníme-li rovnici (8.58) vztah
kde Výběr parametru závisí úspěšnosti iteračního kroku.kde obvykle 0,25 0,75.4. Používá místo vztahu (8