Kniha je úvodem do metod praktického modelování, analýzy, návrhu a optimalizace elektrotechnických zařízeni na číslicovém počítači. Výklad je doprovázen jednoduchými názornými příklady řešených úloh z různých odvětví elektrotechniky.Kniha je určena inženýrům a technikům, kteří se zabývají moderním návrhem elektrotechnických zařízení.
Relaxovaná metoda největšího spádu málo účinná její vlastnosti silně
závisí volbě relaxačního faktoru. Tato metodaje opět iterační.
V prvním iteračním kroku počítáme diference podle vztahu
h,= d'i 2(l-vi dl12)
kde dxje relativni přesnost zobrazení nezávisle proměnné.
Metody prvního řádu pracují analytickým vyjádřením pro gradient účelové
funkce. prvním iteračním kroku sepoužívají
hodnoty f(x) g(x), kde počáteční odhad minima účelové funkce
a pokládá x*.v) 3f(x)l‘
_8x1 dxnJ
Nejjednodušší metodou prvního řádu relaxovaná metoda největšího spádu.38). První iterační krok stejný jako iterační krok relaxované
metody největšího spádu nulovým relaxačním faktorem. Účinnější metodou prvního řádu metoda
paralelních tečen.37).
V každém iteračním kroku vypočítáme směr
s* rs
kde konstantní relaxační faktor, provedeme jednorozměrnou minimalizaci
f(x t*x*) min f(x ts*)
í&Ei
a položíme t*s* f(x t*s*) ->/, g(x -I-t*s*) —►g, Iterační proces
ukončíme, jestliže norma gradientu klesne pod předepsanou mez. každém dalším iterač
ním kroku vypočítáme směr
«i -g
452
. Gradient účelové funkce definován pomocí parciálních derivací účelové
funkce jako vektor vztahem
<T(. prvním iteračním kroku používají hodnoty f(x)
a g(x), kde počáteční odhad minima účelové funkce pokládá s.
Tato metoda iterační. opačném případě použijeme vztah (8. —
3|GhIhf 4\gl
Vliv zbylých členů Taylorova rozvoje účelové funkce lze odhadnout výrazem
1 X
‘ 2
Jestliže £?kde sje předepsaná relativní přesnost pro výpočet parciálních derivací
účelové funkce, použijeme vzorec (8.provedeme zpřesnění
2|0f|
h