Kniha je úvodem do metod praktického modelování, analýzy, návrhu a optimalizace elektrotechnických zařízeni na číslicovém počítači. Výklad je doprovázen jednoduchými názornými příklady řešených úloh z různých odvětví elektrotechniky.Kniha je určena inženýrům a technikům, kteří se zabývají moderním návrhem elektrotechnických zařízení.
optimalizační úloha.8),
je vyhovujícím řešením. Přitom f(x) účelováfunkce optimalizační úlohy.
5
a)
Obr.9)
g;(x (8.
441
.tzv.8) jsou specifikované funkce jsou známé konstanty. posledních pětadvaceti letech však
neobyčejně vzrostl zájem (především ekonomii operačním výzkumu) ob
sáhlou třídu optimalizačních úloh klasickými metodami většinou neřešitelnými. Hranice oblasti
vyhovujících řešení, určené omezujícími podmínkami 2x1+ 20, —0,5x1+x2S 5,
Xj jsou zde vymezeny přímkami OM.
f(x) (8. století známa možnost řešit některé optimalizační úlohy
pomocí diferenciálního variačního počtu.
Již poloviny 18.
Cílová funkce (8. 159a příklad úlohy lineárního programování pro 4
a f(x) 4x2 Funkce f(x) zde znázorněna vrstevnicemi. 159a). 159. Ome
zení (8. Každé pro které jsou splněny omezující vztahy (8.8) platí
právě jen jedno znamének pro každé omezení. Takové vyhovující pro které f(x) dosahuje extrému, je
optimálním řešením optimalizační úlohy.
Množina vyhovujících řešení úlohy lineárního programování tvoří n-roz
měrném prostoru proměnných konvexní mnohostěn konečným počtem vrcholů. obr.10)
kde řádkový vektor známých konstant ak, matice známých kon
stant bik. Přitom mohou
být sobě zcela nezávislé.
Říká sejim úlohy lineárního nebo nelineárního programování. Je-li optimální hodnota cílové funkce omezená, bude alespoň jeden
vrcholový bod množiny optimálním řešením (viz obr. Příklady dvojrozměrné úlohy:
programování
- *1
b)
a) lineárního programování, nelineárního
Nejsnáze řešitelné jsou úlohy lineárního programování, kterých f(x) g;(x)
jsou lineárními funkcemi tj. vztahu (8.9) pak představuje nadrovinu l)-rozměrném euklidovském
prostoru