Využití počítače při elektrotechnických návrzích

| Kategorie: Kniha  | Tento dokument chci!

Kniha je úvodem do metod praktického modelování, analýzy, návrhu a optimalizace elektrotechnických zařízeni na číslicovém počítači. Výklad je doprovázen jednoduchými názornými příklady řešených úloh z různých odvětví elektrotechniky.Kniha je určena inženýrům a technikům, kteří se zabývají moderním návrhem elektrotechnických zařízení.

Vydal: Alfa, vydavateľstvo technickej a ekonomickej litera­túry, n. p., 815 89 Bratislava, Hurbanovo nám. 3 Autor: Heřman Mann

Strana 447 z 480

Vámi hledaný text obsahuje tato stránku dokumentu který není autorem určen k veřejnému šíření.

Jak získat tento dokument?






Poznámky redaktora
5 a) Obr. 441 . Přitom f(x) účelováfunkce optimalizační úlohy. Již poloviny 18. obr.8) jsou specifikované funkce jsou známé konstanty. Říká sejim úlohy lineárního nebo nelineárního programování. posledních pětadvaceti letech však neobyčejně vzrostl zájem (především ekonomii operačním výzkumu) ob­ sáhlou třídu optimalizačních úloh klasickými metodami většinou neřešitelnými. 159.8) platí právě jen jedno znamének pro každé omezení. Každé pro které jsou splněny omezující vztahy (8.10) kde řádkový vektor známých konstant ak, matice známých kon­ stant bik.9) pak představuje nadrovinu l)-rozměrném euklidovském prostoru. 159a příklad úlohy lineárního programování pro 4 a f(x) 4x2 Funkce f(x) zde znázorněna vrstevnicemi.tzv. Ome­ zení (8. Množina vyhovujících řešení úlohy lineárního programování tvoří n-roz­ měrném prostoru proměnných konvexní mnohostěn konečným počtem vrcholů.9) g;(x (8.8), je vyhovujícím řešením. vztahu (8. Je-li optimální hodnota cílové funkce omezená, bude alespoň jeden vrcholový bod množiny optimálním řešením (viz obr. Přitom mohou být sobě zcela nezávislé. Takové vyhovující pro které f(x) dosahuje extrému, je optimálním řešením optimalizační úlohy. Hranice oblasti vyhovujících řešení, určené omezujícími podmínkami 2x1+ 20, —0,5x1+x2S 5, Xj jsou zde vymezeny přímkami OM. 159a). f(x) (8. Příklady dvojrozměrné úlohy: programování - *1 b) a) lineárního programování, nelineárního Nejsnáze řešitelné jsou úlohy lineárního programování, kterých f(x) g;(x) jsou lineárními funkcemi tj. optimalizační úloha. století známa možnost řešit některé optimalizační úlohy pomocí diferenciálního variačního počtu. Cílová funkce (8