Využití počítače při elektrotechnických návrzích

| Kategorie: Kniha  | Tento dokument chci!

Kniha je úvodem do metod praktického modelování, analýzy, návrhu a optimalizace elektrotechnických zařízeni na číslicovém počítači. Výklad je doprovázen jednoduchými názornými příklady řešených úloh z různých odvětví elektrotechniky.Kniha je určena inženýrům a technikům, kteří se zabývají moderním návrhem elektrotechnických zařízení.

Vydal: Alfa, vydavateľstvo technickej a ekonomickej litera­túry, n. p., 815 89 Bratislava, Hurbanovo nám. 3 Autor: Heřman Mann

Strana 447 z 480

Vámi hledaný text obsahuje tato stránku dokumentu který není autorem určen k veřejnému šíření.

Jak získat tento dokument?






Poznámky redaktora
9) pak představuje nadrovinu l)-rozměrném euklidovském prostoru. Hranice oblasti vyhovujících řešení, určené omezujícími podmínkami 2x1+ 20, —0,5x1+x2S 5, Xj jsou zde vymezeny přímkami OM. Cílová funkce (8. Říká sejim úlohy lineárního nebo nelineárního programování. obr. Každé pro které jsou splněny omezující vztahy (8. 159a).8) platí právě jen jedno znamének pro každé omezení. f(x) (8. 159.9) g;(x (8. Takové vyhovující pro které f(x) dosahuje extrému, je optimálním řešením optimalizační úlohy. Již poloviny 18. Ome­ zení (8.8), je vyhovujícím řešením. vztahu (8. 159a příklad úlohy lineárního programování pro 4 a f(x) 4x2 Funkce f(x) zde znázorněna vrstevnicemi. Příklady dvojrozměrné úlohy: programování - *1 b) a) lineárního programování, nelineárního Nejsnáze řešitelné jsou úlohy lineárního programování, kterých f(x) g;(x) jsou lineárními funkcemi tj.8) jsou specifikované funkce jsou známé konstanty. posledních pětadvaceti letech však neobyčejně vzrostl zájem (především ekonomii operačním výzkumu) ob­ sáhlou třídu optimalizačních úloh klasickými metodami většinou neřešitelnými.tzv. Přitom f(x) účelováfunkce optimalizační úlohy. století známa možnost řešit některé optimalizační úlohy pomocí diferenciálního variačního počtu. 5 a) Obr. Je-li optimální hodnota cílové funkce omezená, bude alespoň jeden vrcholový bod množiny optimálním řešením (viz obr. Množina vyhovujících řešení úlohy lineárního programování tvoří n-roz­ měrném prostoru proměnných konvexní mnohostěn konečným počtem vrcholů. optimalizační úloha. 441 . Přitom mohou být sobě zcela nezávislé.10) kde řádkový vektor známých konstant ak, matice známých kon­ stant bik