Kniha je úvodem do metod praktického modelování, analýzy, návrhu a optimalizace elektrotechnických zařízeni na číslicovém počítači. Výklad je doprovázen jednoduchými názornými příklady řešených úloh z různých odvětví elektrotechniky.Kniha je určena inženýrům a technikům, kteří se zabývají moderním návrhem elektrotechnických zařízení.
že
'^p.. při analýze autonomních elektrických
soustav, které vykazují samovolné netlumené periodické kmity bez jakéhokoliv
vnějšího buzení. F;(x0)
a F;(x0 Ax0) představují hodnoty i-tých složek těchto dvou řešení T.
Výpočet periodického řešení p(f) neznámou periodou případě soustavy
m nelineárních diferenciálních rovnic
x(t) f(x(í), (6. Uvažovanou metodu je
tedy nutné pro tento případ vhodně modifikovat.ímin -^p,l(t) -^p..nimi podmínkami x(0k), jednak počátečními podmínkami (q}+ Ax0.93)
o neznámých x01, x02, .92) na
bývá intervalu <0, maximální hodnoty (max minimální hodnoty ímin,
tj. Dříve popsaný postup nelze řešení této úlohy použít jednak
proto, neznáme periodu jednak proto, tomto případě Jacobiho matice
v hranatých závorkách levé straně (6.
Jacobiho matici (6. Takováto úloha přichází úvahu např.94)
333
.92)
o neznámých vyžaduje řešení soustavy nelineárních algebraických rovnic
x F(x0, (6.88) mohla být řešena
jednoznačně, musí být buď doplněna další rovnicí, nebo jednu hledaných veličin
musíme dosadit její předpokládanou hodnotu.88) singulární.89) ovšem není nutné počítat každém iteračním kroku, pokud
řešení dostatečně rychle konverguje.
Popsaný algoritmus pro výpočet ustáleného periodického řešení soustavy
diferenciálních rovnic lze modifikovat pro případ, kdy perioda kmitů není předem
známa.
Předpokládejme, ř-tá složka periodického řešení xp(t) soustavy (6.imax (6., x0m Aby soustava (6