Kniha je úvodem do metod praktického modelování, analýzy, návrhu a optimalizace elektrotechnických zařízeni na číslicovém počítači. Výklad je doprovázen jednoduchými názornými příklady řešených úloh z různých odvětví elektrotechniky.Kniha je určena inženýrům a technikům, kteří se zabývají moderním návrhem elektrotechnických zařízení.
Ustálené periodické řešení
Uvažujme soustavu nelineárních časově nezávislých diferenciálních rovnic
x(í) f(x(í), vp(ř)) (6.86) časově nezávislá, můžeme volit časový počátek libovolně], pro které by
hledané periodické řešení (í) soustavy (6.85) převést tvar
6.
Z tohoto důvodu výhodné vztahy (6. Místo
Lagrangeova interpolačního vzorce tomu využívá vzorec Newtonův, který je
pro případ proměnné délky kroku vhodnější.86)
kde (í) známá periodická funkce času periodou Platí tedy
vP(f) yp(f )
Předpokládejme, soustava (6.
prediction-based differentiation formula).86) intervalu <0, splňovalo okra
jovou podmínku
*o )
Takováto úloha přichází úvahu např. Metoda PDF
umožňuje koeficienty predikčního korekčního polynomu počítat současně.x»-i
i—1
*n+1 Axn-i
H¿=0
Další modifikaci Gearovy metody popsal Bookhoven pod názvem angl.
Jelikož
T
*{T)= f(x(t), vv(tj) 0
331
.
x P(f) P(f )
Naším cílem nalézt takové počáteční podmínky x(0) [jelikož soustava
(6. matematického hlediska tato metoda
sice ekvivalentní metodě BDF, ale lepší výpočetní účinnost. Obdobná modifikace Gearovy metody byla úspěšně interpretována již
Růbnerem-Petersonem programu NAP2.86) alespoň jedno periodické řešení xp(í) pe
riodou tj.84) (6. při analýze neautonomních elektrických
soustav, vykazujících netlumené periodické kmity, vynucené budicími zdroji pe
riodickým průběhem.12.2. Jelikož koeficienty každém vý
početním kroku počítají znovu, nedochází akumulaci chyb. Velmi snadno se
provádí změna řádu metody interpolace průběhu řešení mezi body získanými
integrací