Využití počítače při elektrotechnických návrzích

| Kategorie: Kniha  | Tento dokument chci!

Kniha je úvodem do metod praktického modelování, analýzy, návrhu a optimalizace elektrotechnických zařízeni na číslicovém počítači. Výklad je doprovázen jednoduchými názornými příklady řešených úloh z různých odvětví elektrotechniky.Kniha je určena inženýrům a technikům, kteří se zabývají moderním návrhem elektrotechnických zařízení.

Vydal: Alfa, vydavateľstvo technickej a ekonomickej litera­túry, n. p., 815 89 Bratislava, Hurbanovo nám. 3 Autor: Heřman Mann

Strana 315 z 480

Vámi hledaný text obsahuje tato stránku dokumentu který není autorem určen k veřejnému šíření.

Jak získat tento dokument?






Poznámky redaktora
45) N 1 Pokud (6.odpovídalo řádu metody. dříve uvedenou jedno- krokovou metodou Rungeho Kutty. Mnohokrokové integrační metody Nejrozšířenější numerické integrační metody jsou založeny lineární aproximaci řešení polynomy různého stupně.45) zřejmě náleží l)-krokové metodě, neboť integračním kro­ ku využívá znalosti řešení nejen kroku ale krocích —l,n —p. Ukázali jsme již, přímá zpětná Eulerova metoda řešení aproximuje polynomem prvního stupně lichoběžníková metoda polynomem druhého stupně.45) mohou být voleny velmi rozmanitými způsoby, čímž vzniká mnoho různých mnohokrokových metod. Oblíbenost této metody spočívá tom, lze snadno naprogramovat. Obecně platí, aproximace polynomem r-tého stupně vede metodu r-tého řádu. Další nevýhodou uvedené metody to, vy­ žaduje čtyři vyhodnocení funkce f(x, jednom integračním kroku, aniž tyto hodnoty jakkoliv využívaly dalších krocích. Jak uvidíme dále, jinou možností, jak „na­ startovat“ mnohokrokovou metodu, použít počátku integrace metodu řádu jedna řád metody pak dalších krocích postupně zvyšovat. tzv. konzistent­ ních mnohokrokových metod jsou tyto koeficienty voleny tak, aby metoda řádu při výpočtu řešení x(t), jehož průběh lze přesně charakterizovat polynomem p(t) stupně 311 . Mnohokrokové lineární integrační metody charakterizuje vzorec x»+i aix n-i bif(xn_i,tn_d (6.2. E t Obr. proto výpočetně poměrně málo účinná.45) b_x metoda explicitní, je-li b_1 =)=0, metoda implicitní. Oblast absolutní stability integrační metody Rungeho a Kutty čtvrtého řádu 6.7. 118. 118. také příčinou podstatně větší výpočetní účinnosti těchto metod proti metodám Rungeho Kutty. Proto tato metoda může být integraci použita kroku počátečních p krocích řešení třeba vypočítat jiným způsobem, např. Volba kroku dosti omezena hlediska numerické stability, jak patrné obr. Koeficienty vzorci (6. Integrační metody založené polynomiální aproximaci nazývají mnoho­ krokové, neboť obvykle výpočtu hodnoty n+l využívají hodnoty xn„; xn„ř z několika předchozích integračních kroků. Vzorec (6