Kniha je úvodem do metod praktického modelování, analýzy, návrhu a optimalizace elektrotechnických zařízeni na číslicovém počítači. Výklad je doprovázen jednoduchými názornými příklady řešených úloh z různých odvětví elektrotechniky.Kniha je určena inženýrům a technikům, kteří se zabývají moderním návrhem elektrotechnických zařízení.
Ukázali jsme již,
že přímá zpětná Eulerova metoda představuje aproximaci řešení prvními dvěma
členy Taylorova rozvoje lichoběžníková metoda aproximuje řešení rozdílem
prvních dvou členů jeho Taylorových rozvojů dvou bodech.2.44)
kde
k, f(*„,í)
/ h\
k J
( h\
k f(*„ k2’ 2)
k f(xn hk3, h)
Jelikož jde metodu čtvrtého řádu, dalo usuzovat, metoda dovoluje
volbu dlouhého integračního kroku. ovšem platí
pouze předpokladu, délka kroku není omezena hlediska numerické ne
stability metody, neboť metody vyšších řádů obvykle bývají méně stabilní než metody
nižších řádů. Jednou
z možností, které zde nabízejí, využití Taylorova rozvoje.
6.můžeme dosadit jak (6.42), tak (6.
Integrační metody vyšších řádů lze konstruovat různými způsoby. Navíc nesmíme zapomenout, řádem metody roste počet aritmetic
kých operací prováděných jednom integračním kroku, tím roste strojový čas
a zvětšují chyby zaokrouhlení. praxi proto nejčastěji používají integrační
metody řádem 6.43) opět buď nebo hodnotu
vypočítanou pomocí některého prediktoru. Jelikož numerické derivování obtížné nepřesné, integrační metody
vyšších řádů vycházející přímo Taylorova rozvoje praxi neujaly. Metody vyšších řádů
založené Taylorově rozvoji však vyžadují znalost vyšších derivací funkce f(x, t),
které obvykle nejsou dispozici analytickém tvaru nutné proto počítat
numericky. Proto metody vyšších řádů zpravidla dovolují při určité zadané
přesnosti použít delší integrační krok než metody nižších řádů. Bohužel tomu tak není.
Z Taylorova rozvoje však byly odvozeny metody Rungeho Kutty, nichž
se potřeba vyšších derivací funkce f(x, obchází jejím vyhodnocováním bodech,
které leží uvnitř integračního kroku. Komplikovaný vzorec
(6.44) nedovoluje odvodit jednoduchý vztah pro odhad místní zbytkové chyby
metody, proto krok obvykle nutné volit opatrnosti mnohem kratší, než by
310
. Jednokrokové metody vyšších řádů
Místní zbytková chyba integračních metod řádu jdoucím nule zmenšuje
rychlostí 0(hr+1). praxi nejoblíbenější metoda Rungeho
a Kutty čtvrtého řádu, která dána vzorcem
x„+i ~{ki 2k3 k4) (6.6