Kniha je úvodem do metod praktického modelování, analýzy, návrhu a optimalizace elektrotechnických zařízeni na číslicovém počítači. Výklad je doprovázen jednoduchými názornými příklady řešených úloh z různých odvětví elektrotechniky.Kniha je určena inženýrům a technikům, kteří se zabývají moderním návrhem elektrotechnických zařízení.
229
.87) tedy dosáhneme, nahradíme-li schodovitou
aproximaci vstupu v(t) aproximací lichoběžníkovou, tj.98)
dostaneme integrací polynomu (5.97)
kde a)j2 ¿>)/2. Polynom (5.96)
H
K,,
1
hnJO
1 Ch
K o
(1 eAodo-B
a eA<Ider B
Pro nesingulární A
H l[eAI'« ----- (e~ A,‘" 1)
K, (eA‘- 1)
Ještě přesnější vzorec, než lichoběžníkové pravidlo, získáme aproximací
integrované funkce g(f) polynomem druhého stupně
, f(c) —f(a) ,
P2(^) f(fl) ------- ,------(r +
ll
(5.97) proložen třemi body funkce
f(í) krajními body integračního intervalu f(a), f(b) bodem f(c), který leží upro
střed.Přesnější aproximace (5.98).
Příslušný integrační vzorec, zvaný Simpsonovo pravidlo,
f(í)dř =
b a
f(a) fl
a b
+ f(b) (5.
Odhad zbytkové chyby Simpsonova pravidla můžeme odvodit pomocí Taylorova
rozvoje
1(0 f(fl)(r 4', f(0)(f a)4
i l-
kde b.97) mezích Zbytková chyba Simpsonova
pravidla nulová nejen pro f(í) tvaru polynomu stupně druhého nebo nižšího,
ale polynomu stupně třetího, jak lze snadno dokázat jeho dosazením (5. položíme-li
v(f) v„-i ~r{yn Pro :</ •<l„
h„
Výraz (5.88) tak převede tvar
kde
(5