Využití počítače při elektrotechnických návrzích

| Kategorie: Kniha  | Tento dokument chci!

Kniha je úvodem do metod praktického modelování, analýzy, návrhu a optimalizace elektrotechnických zařízeni na číslicovém počítači. Výklad je doprovázen jednoduchými názornými příklady řešených úloh z různých odvětví elektrotechniky.Kniha je určena inženýrům a technikům, kteří se zabývají moderním návrhem elektrotechnických zařízení.

Vydal: Alfa, vydavateľstvo technickej a ekonomickej litera­túry, n. p., 815 89 Bratislava, Hurbanovo nám. 3 Autor: Heřman Mann

Strana 223 z 480

Vámi hledaný text obsahuje tato stránku dokumentu který není autorem určen k veřejnému šíření.

Jak získat tento dokument?






Poznámky redaktora
70) 220 . Jelikož vztah (5., charakteristického polynomu představuje charakteristická čísla matice A.. Poslední vztahy lze stručněji napsat tvaru AS (5.. Využijeme přitom řešení klasické úlohy charakteristických čísel matice. charakteristické rovnici matice Levá strana této rovnice představuje charakteristický polynom matice A det (X1 —A) = X ^”11 #1212 **• *21 —“22 —a? —a„ /im2 - — am_^Xm . Naším cílem bude nalézt takovou transformační matici aby výsledná matice měla hlediska řešení soustavy (5.,m, můžeme položit ASj AjSj As2 A2s2 kde charakteristický vektor matice příslušející jejímu charakteristickému číslu A;.68) kde skalár Apředstavuje charakteristické číslo neboli charakteristický kořen matice A a vektor příslušný m-rozměrný charakteristický vektor. Matice vyhovující tomuto vztahu označují jako navzájem podobné..(A AJ m kořenů Ax, A2, . jednoduchý tvar. a^X — = —A,)(A —A2)..) Převedeme-li vztah (5.67) Vztah, kterým jsou zde navzájem vázány matice nazývá podobnostní transformace matic...69) Tím jsme dospěli tzv. (Místo „charakteristický“ se této souvislosti rovněž používá označení „vlastní“...69) musí být splněn pro každé Ař, 1,2,.64) nejpříhodnější kanonický, tj.68) soustavu lineárních algebraických rovnic (AI A)s 0 vidíme, uvažovaná úloha může mít netriviální řešení 4=0 pouze předpo­ kladu, že det (A1 (5.pricemz Z(t0) 1x(t0) (5. Úlohou charakteristických čísel matice rozměru rozumíme vztah As (5