Kniha je úvodem do metod praktického modelování, analýzy, návrhu a optimalizace elektrotechnických zařízeni na číslicovém počítači. Výklad je doprovázen jednoduchými názornými příklady řešených úloh z různých odvětví elektrotechniky.Kniha je určena inženýrům a technikům, kteří se zabývají moderním návrhem elektrotechnických zařízení.
Nenulové prvky přitom takovýchto tzv. Řídkost matic přitom často značná; např. ovšem platí pouze předpokladu důsledného využití pásové struktury
tak, aby nedocházelo zbytečným operacím nulovými prvky. 72b prvním případě jde tzv. příčkovou strukturou. matice tridiagonální. 12. Jak jsme
ukázali při rozkladu plných matic, hlediska přesnosti výpočtů jsou nežádoucí
122
.
Při návrhových úlohách však nejčastěji setkáme potřebou řešit soustavy
s takovými řídkými maticemi, jejichž struktura nenulových prvků zcela obecná
a úlohy úloze mění. 72a struktura pásové matice tedy šířkou pásma
rovnou třem, tzv. těmito maticemi setkáme např. Proto důsledné využití řídkosti již při řešení úloh střední
složitosti zcela nezbytné. řídkých maticích mohou vytvářet
buď obecnou předem neznámou nebo určitou specifickou strukturu. Řešení soustav
rovnic těmito řídkými maticemi lze rozdělením matic převést řešeni několika
(zde tří) méně rozsáhlých soustav plnými maticemi. Řešení soustavy
rovnic pásovou maticí včetně rozkladu vyžádá pouze n(p2 2)
operace. při analýze
elektronických soustav procento řídkosti matic obvykle roste jejich rozměrem
téměř kvadraticky.
a)
x x
X X
X X
X X
X X
b)
X
X
X
X
X
C)
Obr.Nejčastěji však setkáváme maticemi, jejichž podstatná část prvků je
nulová. matici blokově
diagonální, případě druhém matici blokově trojúhelníkovou. Dále jsou tzv.
Příklady dalších specifických struktur nenulových prvků řídkých matic, nimiž
se často setkáváme, jsou obr. diagonální trojúhelníková matice. matice
pásové, pro jejichž prvky platí ařj- pokud nebo přičemž
w šířka pásma matice.
Při řešení soustav řídkými maticemi obecné struktuře žádoucí vhodným
výběrem klíčových prvků během rozkladu minimalizovat nejen
a) chybu výsledku vznikající zaokrouhlováním, ale i
b) nárůst nenulových prvků během rozkladu a
c) celkový počet aritmetických operací násobení sečítání potřebných řešení.
Jelikož při výběru klíčových prvků obvykle nelze minimalizovat všechny
uvedené činitele současně, praxi zpravidla volí vhodný kompromis. druhé
kategorie patří např. Struktura nenulových prvků matice tridiagonální, blokově diagonální,
c) blokově trojúhelníkové
Na obr. při
analýze pasívních elektrických soustav tzv