Kniha je úvodem do metod praktického modelování, analýzy, návrhu a optimalizace elektrotechnických zařízeni na číslicovém počítači. Výklad je doprovázen jednoduchými názornými příklady řešených úloh z různých odvětví elektrotechniky.Kniha je určena inženýrům a technikům, kteří se zabývají moderním návrhem elektrotechnických zařízení.
diagonální trojúhelníková matice.
Při návrhových úlohách však nejčastěji setkáme potřebou řešit soustavy
s takovými řídkými maticemi, jejichž struktura nenulových prvků zcela obecná
a úlohy úloze mění. řídkých maticích mohou vytvářet
buď obecnou předem neznámou nebo určitou specifickou strukturu. ovšem platí pouze předpokladu důsledného využití pásové struktury
tak, aby nedocházelo zbytečným operacím nulovými prvky. Nenulové prvky přitom takovýchto tzv. 12. matice tridiagonální. těmito maticemi setkáme např.Nejčastěji však setkáváme maticemi, jejichž podstatná část prvků je
nulová. při analýze
elektronických soustav procento řídkosti matic obvykle roste jejich rozměrem
téměř kvadraticky. Řídkost matic přitom často značná; např. při
analýze pasívních elektrických soustav tzv. Jak jsme
ukázali při rozkladu plných matic, hlediska přesnosti výpočtů jsou nežádoucí
122
. Řešení soustavy
rovnic pásovou maticí včetně rozkladu vyžádá pouze n(p2 2)
operace.
Jelikož při výběru klíčových prvků obvykle nelze minimalizovat všechny
uvedené činitele současně, praxi zpravidla volí vhodný kompromis.
Příklady dalších specifických struktur nenulových prvků řídkých matic, nimiž
se často setkáváme, jsou obr. druhé
kategorie patří např. Proto důsledné využití řídkosti již při řešení úloh střední
složitosti zcela nezbytné. 72b prvním případě jde tzv. Struktura nenulových prvků matice tridiagonální, blokově diagonální,
c) blokově trojúhelníkové
Na obr. matici blokově
diagonální, případě druhém matici blokově trojúhelníkovou. matice
pásové, pro jejichž prvky platí ařj- pokud nebo přičemž
w šířka pásma matice. 72a struktura pásové matice tedy šířkou pásma
rovnou třem, tzv. příčkovou strukturou.
Při řešení soustav řídkými maticemi obecné struktuře žádoucí vhodným
výběrem klíčových prvků během rozkladu minimalizovat nejen
a) chybu výsledku vznikající zaokrouhlováním, ale i
b) nárůst nenulových prvků během rozkladu a
c) celkový počet aritmetických operací násobení sečítání potřebných řešení. Dále jsou tzv.
a)
x x
X X
X X
X X
X X
b)
X
X
X
X
X
C)
Obr. Řešení soustav
rovnic těmito řídkými maticemi lze rozdělením matic převést řešeni několika
(zde tří) méně rozsáhlých soustav plnými maticemi