V knize A. Beiser „Perspectives of Modem Physics“, jejíž překlad pod názvem „Úvod do moderní fyziky“ je předkládán českému čtenáři, je uplatněno spíše druhé hledisko (i když výklad začíná speciální teorií relativity). Zde by bylo možno se podivit disonanci, že anglické slovo „perspectives“ je přeloženo jako „úvod“. Slovo perspektiva, alespoň v češtině, nezdá se plně vystihovat skutečný obsah díla a zatímco v angličtině knih podobného obsahu jako kniha Beiserova vyšla celá řada a názvy mnohých z nich začínají slovem „Introduction“, tj. „Úvod“, v češtině takových knih máme poskrovnu, jsou-li vůbec k dispozici. Ve prospěch tohoto volnějšího překladu (jednoho slova) svědčí nakonec i autorova předmluva, v níž jsou jasně vyloženy jak jeho přístup k celé látce a jejímu výběru, tak i pojetí výkladu po stránce metodické. Z těchto Beiserových řádků je zřejmé, že jde o úvodní učebnici, nechceme-li se dovolávat přímo vlastního obsahu knihy.
15) rif <
?; exp (a) .
V každé rovnic, které sčítáme vztahu (15. Nyní
8 ,
ni
takže je
$> 5ni ■
Protože celkový počet míčků konstantní, musí být součet 8nř všech změn počtu
míčků každé buňce což znamená, je
Yjii rit . počtu míčků každé buněk nejsou
vzhledem neměnnosti jejich celkového počtu nezávislé, nýbrž musí splňovat vztah
(15. 8nk .
369
.10) Wmax rit tli 8«i 8nt ,
neboť konstantní.14), musí být veličina závorkách vždycky rovna 0
bez ohledu hodnoty 8nf.) Je-li změna odpovídající změně 8n, rovna W,
vidíme (15.
Vztah (15...
Nechť veličina nezávislá žádném nt; vynásobme vztah (15.
K započtení této podmínky užijeme Lagrangeovy metody neurčitých multiplikátorů.14) Snt 8nf £<x 8nt 8n, ..
Ačkoli nejpravděpodobnější rozdělení míčků musí splňovat vztah (15.3
a celočíselné hodnoty, mohli bychom vyjádřit tuto podmínku obvyklým způsobem
jako dWjdiii 0.11),
není takové rozdělení touto podmínkou samotnou ještě zcela určeno.15.. Musíme při
hlédnout tomu, variace Snx
>8n2, . Máme tak
—lg ,
(15.13) §řIf •
Nyní tuto rovnici sečteme (15.9), je
(15.12)
(15.14), variace fakticky nez
vislá proměnná.11) dostaneme
(15.10) tudíž přejde v
(15.12) 8nt 8«2 . Aby platilo (15.11) 8nf