Teorie rádiové komunikace

| Kategorie: Skripta  | Tento dokument chci!

... text je určen jak zájemcům z řad studentů magisterského, doktorského a bakalářského studia elektrotechnických oborů vysokých škol, tak i zájemcům z řad odborné veřejnosti, kteří si potřebují osvěžit či doplnit znalosti z dané oblasti. Text je členěn do celkem 18 kapitol. Pomyslně může být rozdělen do dvou částí - úvodní spíše teoreticky zaměřené (Teorie informace, Komunikační signály, Mezi symbolové interference, Příjem komunikačních signálů), následované více aplikačně zaměřenými kapitolami (Číslicové modulace, Rozprostřené spektrum a CDMA, Systémy s více nosnými a OFDM, Kombinace OFDM/CDMA/UWB, Komunikační kanály, Vyrovnavače kanálů, Protichybové kódování, UWB komunikace, MIMO systémy, Softwarové, kognitivní a kooperativní rádio, Adaptivní metody v rádiových komunikacích, Analýza spektra rádiových signálů, Změna vzorkovacího kmitočtu, Zvyšování přenosové rychlosti rádiových komunikačních systémů) ...

Vydal: FEKT VUT Brno Autor: UREL - Roman Maršálek

Strana 11 z 144

Vámi hledaný text obsahuje tato stránku dokumentu který není autorem určen k veřejnému šíření.

Jak získat tento dokument?






Poznámky redaktora
Hustota pravděpodobnosti normál- ního rozdělění je: p(x) = 1 σ √ 2π e− (x−x0)2 2σ2 , (1. vzájemná informace I(X; mezi dvěma náhodnými veličinami : I(X; = ∞ −∞ ∞ −∞ pX,Y (x, log2 pX (x|y) pX(x) dxdy, (1. diferenciální (vztažná, relativní) entropie h(X) definovaná analogicky vztahu 1.15 obdržíme: h(X) − ∞ −∞ 1 σ √ 2π e− (x−x0)2 2σ2 log2 1 σ √ 2π e− (x−x0)2 2σ2 dx.11 1. Potom možné psát (pro usnadnění budou používány přirozené logaritmy): h(X) − ∞ −∞ 1 √ 2π e− z2 2 ln 1 σ √ 2π e− z2 2 ln 1 σ √ 2π ∞ −∞ p(z)dz+ + 1 2 ∞ −∞ z2 p(z)dz ln 1 σ √ 2π + 1 2 = ln 1 σ √ 2π + 1 2 ln = 1 2 ln 2πeσ2 .17) Nyní bude ukázána úprava tohoto vztahu tak jak uvedena [8].19) Od přirozeného logaritmu pak můžeme přejít logaritmu obecným základem: h(X) = 1 2 log 2πeσ2 (1. Budou využity vlas- nosti normovaného normálního rozdělení (nulová střední hodnota, jednotková směrodatná odchylka) funkcí hustoty pravděpodobnosti: p(z) = 1 √ 2π e− z2 2 (1.4 Teorém kapacitě kanálu Cílem této, poslední kapitoly týkající teorie informace uvést naznačit odvození nejznámnějšího Shannonových teorémů teorému kapacitě kanálu. (1. První nich je tzv.3: h(X) = ∞ −∞ pX(x) log2 1 pX(x) dx, (1. Předtím bude ale opět třeba zavést některé veličiny týkající přenosu spojitými kanály. (1.21) . dosazení p(x) vztahu 1.15) přičemž px(x) funkce hustoty pravděpodobnosti spojité náhodné veličiny Bylo by možné ukázat [2, největší diferenciální entropii mají (pro případ stejné směrodatné odchylky) náhodné veličiny normálním rozdělěním.18) čehož bude dosaženo pomocí substituce x−x0 σ .16) kde směrodatná odchylka střední hodnota.20) Další veličin, charakterizujících přenos kanálem vstupem x(t) výstupem y(t) je tzv