Optimalizace v energetických soustavách

| Kategorie: Kniha  | Tento dokument chci!

Obsahem této knihy jsou především výsledky této více než dvacetileté vědeckovýzkumné práce. Nejde však přitom o výsledky toliko výzkumu. Jeho závěry byly uplatňovány ve výuce, ověřovány v diplomních pracích absolventů na katedře, konfrontovány s názory odborníků na domácích i mezinárodních konferencích a aplikovány v rámci tradiční spolupráce katedry s energetickou praxí.Tato publikace nemůže vyčerpat beze zbytku celou šíři problematiky optimalizace v energetických soustavách. Byl bych proto rád, kdyby se stala nejen užitečnou příručkou pro řídící pracovníky v energetických podnicích, ve výzkumných, projekčních a investorských organizacích a učební pomůckou pro posluchače studijního oboru Ekonomika a řízení energetiky na vysokých školách technických, ale také podnětem k vydávání dalších publikací, rozvíjejících a rozšiřujících její obsah.

Vydal: Academia Autor: Jiří Klíma

Strana 186 z 302

Vámi hledaný text obsahuje tato stránku dokumentu který není autorem určen k veřejnému šíření.

Jak získat tento dokument?






Poznámky redaktora
60) (4. nižší, střední nebo vyšší tepelnou účinností). můžeme-Ii určit pravděpodobnosti stavů okolí.2 Při výstavbě energetické výrobny přicházejí úvahu tři možnosti (varianty): tepelným cyklem na nižší, střední nebo vyšší parametry (tj. Vychází axiomu, matematická naděje souhrnné užitnosti varianty rovná součtu matematických nadějí dílčích užitností. 192 .60) kde u0ij očekávaná užitnost (matematická naděje) i-té varianty při y-tém stavu okolí, Uij užitnost (-té varianty při /-těm stavu okolí, Pí pravděpodobnost výskytu -tého stavu okolí. Očekávanou užitnost jednotlivých variant pak vypočteme použitím vztahů (4. Využití koncepce očekávané užitnosti osvětlíme příkladu. Podle průzkumu situace cenách energetického paliva odborných odhadů (zde objevuje subjektivní faktor) pravděpodobnost nízké ceny paliva 0,1, střední 0,3 vysoké 0,6. 4.61) viz tab.4. maximum případě kladného ingradientu, minimum při záporném ingradientu.62) varianta vyšší účinností tepelného cyklu. Tato naděje, tj.3). Očekávaná užitnost celé varianty pak dána součtem očekávaných užitností pro všechny stavy okolí. Tedy Uoij UijPi (4. Optimálním řešením tomto příkladu pak podle (4. očekávaná užitnost dané varianty při určitém stavu okolí, součinem užitnosti pravděpodobnosti výskytu příslušného stavu okolí pro danou variantu. Jako kritérium zde může fungovat zisk (vzhledem stejnému výrobnímu účinku všech tří variant náklady). Podle tohoto kritéria optimální tedy varianta, jíž odpovídá optimální hodnota očekávaných výsledků, tj. Výše užitnosti (zisku, nákladů) těchto variant bude záviset ceně paliva, která může být nízká, střední nebo vysoká. Příklad 4.62) V <f> 1 kde u,opl optimální varianta. Tento rozhodovací problém lze vyjádřit rozhodovací maticí užitností, níž čísla představují zisk dobu porovnání zvolených peněžních jednotkách (tab. očekávaná užitnost zvolené varianty našem příkladu 165 mil. 4. Bayesovo kritérium spočívá maximalizaci matematické naděje varianty u iop,) pjU^j (4.61) 1=1 kde uoi očekávaná užitnost í-té varianty, m počet stavů okolí. m u0i oij, (4. Je však třeba upozornit, tzv.OPTIM ALIZACE ROZVOJE ENERGETICKÝCH SOUSTAV Očekávaná užitnost (Bayesovo kritérium) Toto kritérium nejvíce rozšířené pro informační situaci tj. Kčs) není shodná její skutečnou užitností, která vyplyne budoucích skutečných cen paliva