Obsahem této knihy jsou především výsledky této více než dvacetileté vědeckovýzkumné práce. Nejde však přitom o výsledky toliko výzkumu. Jeho závěry byly uplatňovány ve výuce, ověřovány v diplomních pracích absolventů na katedře, konfrontovány s názory odborníků na domácích i mezinárodních konferencích a aplikovány v rámci tradiční spolupráce katedry s energetickou praxí.Tato publikace nemůže vyčerpat beze zbytku celou šíři problematiky optimalizace v energetických soustavách. Byl bych proto rád, kdyby se stala nejen užitečnou příručkou pro řídící pracovníky v energetických podnicích, ve výzkumných, projekčních a investorských organizacích a učební pomůckou pro posluchače studijního oboru Ekonomika a řízení energetiky na vysokých školách technických, ale také podnětem k vydávání dalších publikací, rozvíjejících a rozšiřujících její obsah.
Matematické modely rozvoje energetických soustav
Matematickým modelem systému obvykle rozumí systém matematických
prostředků, jehož struktura chování přibližně napodobuje strukturu chování
modelovaného systému... při zjednodušeném napodobe
ní energetické soustavy matematickým modelem bude tento model poměrně
složitým systémem.
Při modelování reality však nejde získání dokonalé kopie její určité části, ale
o její úmyslné zjednodušení cílem zobrazit (vzhledem účelu, němuž model
na realitě zavádí) podstatné vlastnosti reality.1.
Systém jako celek určen symbolickým zápisem
A (B, M), .
V této kapitole jde matematické modely energetických soustav, především
o modely rozvoje těchto soustav.MATEM ATICKÉ ODELY ROZVOJE ENERGETICKÝCH SOUSTAV
4. můžeme rozlišit
— jeho prvky A,, A2, ., A„,
— množinu jeho prvků ■■■, A„,
— množinu jeho vazeb M,
— okolí systému jako prvek A0. Systém-originál tedy napodobuje systémem-modelem.
První období používání matematických modelů bylo charakterizováno řadou
„dětských nemocí“ přirozeně vzniklých při rychlém rozvoji takového výkonného
nástroje.
149
.1, tj.
Podle Lencze [15] platí přitom tomto systému vše, bylo uvedeno obecně
o systémech čl. 1.
Matematické metody optimalizace matematické modely jsou podle [4, 7]
moderní nástroje, umožňující:
a) rychlé variantní zpracování velkého množství informací,
b) vybírat velkého počtu možných řešení relativně omezený počet nejlepších
řešení,
c) určovat korekční zásahy rozvoje systému, směřující realizaci optimální
ho řešení. Problém rozvoje energetických soustav je
jedinečný svou dimenzí, počtem prvků soustavy (energetických zařízení), jejich
parametrů vzájemných vazeb, které při modelování soustav musí respektovat,
a časovým rozpětím, které musí model obsáhnout. nim patřilo například podcenění složitosti reálných úloh optimálního
řízení toho vyplývající chybná představa, počítače „dokáží vše“ „velmi rychle
a jednoduše“ brzy dokáží dokonce nahradit člověka všech (nebo téměř ve
všech) oblastech intelektuální činnosti; předpokládalo také, „čím jsou
matematické modely přesnější rozsáhlejší, tím jsou lepší“ lze sestavit tak
obecný univerzální model energetického hospodářství, aby při jeho použití bylo
možno jedním zmáčknutím tlačítka získat optimální řešení atp. Matematický model systému tedy
zahrnuje takové vlastnosti systému-originálu, které jsou hlediska účelu modelo
vání podstatné