Klasifikace vzorů pomocí fuzzy neuronových sítí

| Kategorie: Diplomové, bakalářské práce  | Tento dokument chci!

Práce popisuje základy principu funkčnosti neuronů a vytvoření umělých neuronových sítí. Je zde důkladně popsána struktura a funkce neuronů a ukázán nejpoužívanější algoritmus pro učení neuronů. Základy fuzzy logiky, včetně jejich výhod a nevýhod, jsou rovněž prezentovány. Detailněji je popsán algoritmus zpětného šíření chyb a adaptivní neuro-fuzzy inferenční systém. Tyto techniky poskytují efektivní způsoby učení neuronových sítí.

Vydal: FCC Public s. r. o. Autor: Tamás Ollé

Strana 42 z 67

Vámi hledaný text obsahuje tato stránku dokumentu který není autorem určen k veřejnému šíření.

Jak získat tento dokument?






Poznámky redaktora
These functions can create simple neural network structure, and are able train and evaluate it. The target matrix and the matrix parameters are returned return values of the function. 'c' means Czech, 'e' means English and the prefix 'h' for Hungarian). Since the average length the recorded words are around 700ms, each file set to this length cutting the signal this time point and filled with zeros case of shorter files. However, parameters can be used instead the original signals that describe the signal shape appropriate level. This information used for creating the target matrix (tgt) that used for training the network. Further signal preparation described in Chapter 6. The file names are prepared contain information about the language of the recording. The number neurons in each layer also set here.m This function used for audio file loading and parameter calculation (see Appendix). The input signal limited with band-pass filter with range 100 kHz to filter out background noise then divided into number frames depending its length and the adjusted parameters. For the case usage neural network, the function feedforwardnet used, which creates neural network suitable for classification tasks. Afterwards, the network tested for correctness with the same data used for training using the function evalfis. Loading audio files wavload. After that, all files are processed sequentially, described herein. The first letter corresponds the first letter the used languages (i. The given file read into vector and normalized have maximal amplitude Subsequently, the parameters are calculated using the params function. The number ANFIS networks equals the number output variables (columns matrix tgt). Firstly, the file names are determined the given directory that has the wav extension. utilizes hybrid learning technique, what combination the least-squares estimator (LSE) method and the error backpropagation (EBP) algorithm.e. Analysis parameters –params. .33 The learning itself realized the function anfis that executes the learning algorithm individually for each network.1.m The signals their raw form are not suitable inputs network because these contain extremely large amount information. In the case, the mode set 'nnv', the neural network functions created within the frame Semestral Project MM2E (netinit, netlearn and neteval) are use. The result each network saved the corresponding column matrix res. The function train trains the network for the given training data