Klasifikace vzorů pomocí fuzzy neuronových sítí

| Kategorie: Diplomové, bakalářské práce  | Tento dokument chci!

Práce popisuje základy principu funkčnosti neuronů a vytvoření umělých neuronových sítí. Je zde důkladně popsána struktura a funkce neuronů a ukázán nejpoužívanější algoritmus pro učení neuronů. Základy fuzzy logiky, včetně jejich výhod a nevýhod, jsou rovněž prezentovány. Detailněji je popsán algoritmus zpětného šíření chyb a adaptivní neuro-fuzzy inferenční systém. Tyto techniky poskytují efektivní způsoby učení neuronových sítí.

Vydal: FCC Public s. r. o. Autor: Tamás Ollé

Strana 41 z 67

Vámi hledaný text obsahuje tato stránku dokumentu který není autorem určen k veřejnému šíření.

Jak získat tento dokument?






Poznámky redaktora
These clusters are used for simplification of the input side the network. For the creation of input rules, the subtractive cluster analysis method used. For the selection of the operation mode, the variable mode has set 'anfis' 'nnv' by commenting and uncommenting the individual lines. The purpose the first part read the parameters the test voice recordings. Subsequently, some clusters are merged together based preset distance criterion, then the new cluster centers are calculated.32 7. The usage this toolbox greatly increases the processing speed case the processor multi-cored there are more computers available. Parfor part of the parallel processing toolbox.The next part the code brings into effect the actual learning the network. In the case the mode set 'anfis', the parfor cycle used for the creation and learning three ANFIS networks, each for one output variable. For the purpose this work, the practical usage ANFIS heavily limited its high demands on processing power for the case higher number inputs and second level neurons. The program itself can separated into parts: ANFIS using the Matlab's Fuzzy Logic Toolbox ('anfis') and the individually built neural network based the backpropagation algorithm presented Chapter ('nnv'). Its iterations are run parallel increasing the computing speed. this case means very high number created membership functions and second level neurons. Its listing included Appendix. The main program the script file spust. This approach significantly increases the maximal number usable inputs the system. . Therefore, special function was used for the creation these functions and network nodes which analyses the input data and searches for existing clusters it. This program serves for probing ANFIS well neural networks. The subtractive clustering initially assumes all data points clusters.m. mode='anfis'; %mode='nnv'; The data reading implemented the wavload function, which receives as input parameters the path the directory containing training files and the number of output parameters. the beginning this script, the parallel processing toolbox is initialized the command matlabpool open. The function genfis2 creates Sugeno-type FIS structure. This method tries to make use existing patterns simplify the input part the network. THE REALIZATION THE PROGRAM This chapter serves demonstrate the program built Matlab. Firstly, the given network has created. The basic task network creation takes into account all combinations inputs and membership functions