Klasifikace vzorů pomocí fuzzy neuronových sítí

| Kategorie: Diplomové, bakalářské práce  | Tento dokument chci!

Práce popisuje základy principu funkčnosti neuronů a vytvoření umělých neuronových sítí. Je zde důkladně popsána struktura a funkce neuronů a ukázán nejpoužívanější algoritmus pro učení neuronů. Základy fuzzy logiky, včetně jejich výhod a nevýhod, jsou rovněž prezentovány. Detailněji je popsán algoritmus zpětného šíření chyb a adaptivní neuro-fuzzy inferenční systém. Tyto techniky poskytují efektivní způsoby učení neuronových sítí.

Vydal: FCC Public s. r. o. Autor: Tamás Ollé

Strana 31 z 67

Vámi hledaný text obsahuje tato stránku dokumentu který není autorem určen k veřejnému šíření.

Jak získat tento dokument?






Poznámky redaktora
Thanks its capability and because can perform the same function, almost any neural network can replaced ANFIS. (1997) class adaptive networks that are functionally equivalent fuzzy inference systems (FIS), where the parameters fuzzy inference systems are updated neural networks from set training data. ADAPTIVE NEURO FUZZY INFERENCE SYSTEM Adaptive Neuro Fuzzy Inference System (ANFIS) developed Jang al.1 Learning algorithm ANFIS The standard ANFIS uses the Sugeno-type fuzzy model generate fuzzy rules from given input-output data set. adaptive network, its name implies, network structure consisting nodes and directional links through which the nodes are connected. For easy understanding, let's take simple version fuzzy inference system with two inputs and one output rule set for . The hybrid learning algorithm includes two stages, which are:  forward pass identifies the consequent parameters with the help FIS learning mechanism and least-squares estimator (LSE)  backward pass propagates backward the error rates (error backpropagation) and updates the premise parameters the gradient descent method In ANFIS, the membership functions (gaussian functions) are expected map all inputs changing their parameters. ANFIS consists self-tuning Sugeno-type inference system and calculates its outputs weighted linear combination the consequents. The fuzzy membership function the basic block fuzzy logic systems and has many possible interpretations [10].22 5. Moreover, part all the nodes are adaptive, which means their outputs depend the parameters pertaining these nodes, and the learning rule specifies how these parameters should changed minimize a prescribed error measure. desired that all inputs can mapped to produce the desired outputs. Unfortunately, the case that there occur variations in the inputs, the desired outputs will poorly approximated the actual outputs because limitations finding the parameters the fixed finite number fuzzy membership functions [10]. can define the richness the extracted information from the given data case highly nonlinear systems and the form of the membership functions can extended cover this richness. ANFIS enjoys many the advantages claimed neural networks (NNs) and the linguistic interpretability fuzzy inference systems, wherein both NNs and FIS play active roles effort reach specific goals [10], [11]. 5. Its primary advantages are non- linearity and structural knowledge representation