Klasifikace vzorů pomocí fuzzy neuronových sítí

| Kategorie: Diplomové, bakalářské práce  | Tento dokument chci!

Práce popisuje základy principu funkčnosti neuronů a vytvoření umělých neuronových sítí. Je zde důkladně popsána struktura a funkce neuronů a ukázán nejpoužívanější algoritmus pro učení neuronů. Základy fuzzy logiky, včetně jejich výhod a nevýhod, jsou rovněž prezentovány. Detailněji je popsán algoritmus zpětného šíření chyb a adaptivní neuro-fuzzy inferenční systém. Tyto techniky poskytují efektivní způsoby učení neuronových sítí.

Vydal: FCC Public s. r. o. Autor: Tamás Ollé

Strana 30 z 67

Vámi hledaný text obsahuje tato stránku dokumentu který není autorem určen k veřejnému šíření.

Jak získat tento dokument?






Poznámky redaktora
The membership values are then multiplied weights attached to the connection the input unit the hidden unit. Better state have characteristically higher reinforcements. . The crisp output value belonging the minimum membership value can easily calculated the inverse function (thanks to the monotonicity this function). ARIC made feedforward neural networks, the Action-State Evaluation Network (AEN) and the Action Selection Network (ASN). The weight changes are determined reinforcement procedure that uses the output the ASN and the AEN. the input layer, the system state variables are fuzzified [8]. The AEN tries forecast the behavior the system. The network output v[t, t´] viewed prediction future reinforcement that depends the weights time and the system state time (which can t+1). fact, it consists two separated nets, where the first one the fuzzy inference part and the second one neural network that calculates p[t, 1], measure of confidence associated with the fuzzy inference value u(t 1), using the weights of time and the system state time stochastic modifier combines the recommended control value u(t) the fuzzy inference part and the called „probability“ value and determines the final output value the ASN [8]:  1,,)´( ttptuotu (4.1) The hidden unit the fuzzy inference network represent the fuzzy rules, the input units the rule antecedents, and the output unit represents the control action, that the defuzzified combination the conclusions all rules (output hidden units). ARIC uses monotonic membership functions only. feedforward neural network with one hidden layer, which receives the system state its input and an error signal from the physical system additional information [8]. This value multiplied with the connection weight between the hidden unit and the output unit. The output value then calculated weighted avarage all rule conclusions [8]. The minimum those values its final input [8].21 This architecture has the opportunity combine the advantages both neural networks and fuzzy controllers. A special monotonic membership function which represents the conclusion of the rule stored each hidden unit. The fuzzy labels control rules are set for each rule locally. The ARIC architecture was applied cart-pole balancing and was shown that the system able solve this task [8]. ASN multilayer neural network representation fuzzy controller. predefining the fuzzy IF-THEN rules the system learns faster than standard neural control system, because has not to learn from scratch