V této úvodní kapitole se pokusíme nastínit některé metodologické aspekty stavby fyziky a jejího začlenění do kontextu ostatní přírodovědy a vědeckého poznání vůbec. Tyto metodologické poznámky mohou být zajímavé např. pro studenty a zájemce nefyzikálních profesí, kteří si chtějí udělat ucelený obraz o fyzikálních aspektech zkoumání přírody.
..
.k.. Počet dopadajících částic dále dán jejich počtem objemové jednotce.
. Špatnými vodiči tepla jsou kapaliny plyny. Boltzmannova konstanta, jejíž číselná hodnota 1,380..v molekuly hmotnosti souvisí její kinetickou energií vztahem p2/m...10-23 Joule/Kelvin.10. střední kvadratickou rychlost <vkv> druhou odmocninou střední hodnoty čtverce
rychlosti molekul) vztah: <vkv> √<v2> √(3kT/m).. Maxwellův-Boltzmannův zákon statistického
rozdělení kinetických energií pohybujících molekul (ideálním) plynu .m. Tato konstanta jakýmsi
"přepočítávacím faktorem" mezi energetickou mírou teploty látky fenomenologicky zavedenou teplotní stupnicí
ve stupních Kelvina (°K; vztah mezi absolutní Kelvinovou stupnicí "vodní" Celsiovou stupnicí T[°K] 273 t[°C] ).. při zakřívání dna nádoby vodou vznikají proudy ohřáté vody s
nižší hustotou ode dna směrem nahoru hladině.. Tlak P
se vyjadřuje jako síla působící jednotku plochy, přičemž tato síla dána rychlostí časové změny hybnosti
dopadajících částic.. Při ještě vyšších teplotách pak dochází ionizaci atomů
a rozkladu molekul....
q Prouděním (konvekcí), při němž kapalinách plynech jsou rychleji kmitající částečky zahřátého
místa unášeny proudící tekutinou.. Tlak plynu stěny nádoby tedy přímo úměrný hustotě plynu střední hodnotě čtverce rychlostí jeho molekul.htm (39 58) [15..
q Zářením (sáláním, radiací), kdy excitované atomy molekuly zahřátého tělesa vyzařují infračervené
záření, které šíří optickým prostředím vakuem pohlcováno druhým (chladnějším) tělesem,
čímž jsou rozkmitávány jeho atomy molekuly těleso zahřívá..
*) Při dostatečně vysokých teplotách však již tyto srážky atomů molekul nejsou pružné, dochází excitaci atomů
a molekul následnou deexcitací doprovázenou zářením.<v2>, kde hustota
plynu.
p.
teplotní rozdíly gradienty např. Pro běžné plyny teplot obvyklých zemském ovzduší jsou
tyto rychlosti řádu stovek metrů sekundu.
Jelikož kinetická energie molekuly hmotnosti souvisí její rychlostí známým vztahem (1/2)mv2, vychází
pro rychlost molekul (tzv..cz/JadRadFyzika. Např.
Mechanické nárazy atomů molekul plynu stěny nádoby vyvolávají síly reakce, které jsou
příčinou tlaku plynu. Vojtěch Ullmann: Jaderná radiační fyzika
V plynech kapalinách probíhá neuspořádaný pohyb pružně srážejících atomů molekul (může
být pozorován jako známý Brownův pohyb)..
Mechanické nárazy atomů molekul stěny nádoby vyvolávají síly reakce, které jsou příčinou tlaku plynu.no..<v2>, resp.RNDr. celková změna její hybnosti 2.
Okamžitá rychlost jednotlivých srážejících molekul plynu různá časem nepravidelně mění jak velikosti,
tak směru.. Hybnosti částic jsou orientovány chaoticky všech tří směrů prostoru, takže počet částic dopadajících stěnu činí
v průměru jen 1/3 celkového jejich počtu.. Při
každém pružném nárazu stěnu změní molekula svoji hybnost opačnou, tj... tomuto proudění přírodě často přispívá teplo samotné, resp. statistické mechanice odvozuje tzv...... Dobrými
vodiči tepla jsou kovy (kde vedení tepla podílejí volně pohyblivé elektrony) pak látky, které
vykazují pevné vazby dalekodosahové uspořádání.. pro vodík teploty 0°C 273°K) <vkv> 1300 m/s. Po
započtení všech těchto okolností tlak daný vztahem: (1/3).T, kde je
tzv.. neuspořádané kmitavé pohyby atomů molekul, látkách šíří jednoho místa na
druhé třemi základními způsoby:
q Vedením (kondukcí), při němž rychleji kmitající částečky (atomy molekuly) zahřátého místa narážejí
na sousední částečky tím rozkmitávají, pak narážejí další sousední částečky atd.
Pro tepelné vlastnosti látek důležitá závislost mezi pohlceným množstvím tepla (energie) vzrůstem
http://astronuklfyzika.stavová rovnice..ρ...2008 12:13:17]
..
Šíření tepla
Teplo, tj... (1/3).. Hybnost m... plynu zahřátém (absolutní) teplotu T
je střední kinetická energie <εk> jednu molekulu úměrná teplotě podle vztahu: <εk> (3/2)