V této úvodní kapitole se pokusíme nastínit některé metodologické aspekty stavby fyziky a jejího začlenění do kontextu ostatní přírodovědy a vědeckého poznání vůbec. Tyto metodologické poznámky mohou být zajímavé např. pro studenty a zájemce nefyzikálních profesí, kteří si chtějí udělat ucelený obraz o fyzikálních aspektech zkoumání přírody.
Detektory tohoto
druhu budou rozebírány níže §2. Základní blokové schéma elektronického detektoru záření.1.1.10.
q Materiálové,
využívající dlouhodobější změny vlastností určitých látek (složení, barva radiochromatické
detektory, excitace termoluminiscenční OSL dozimetry) působením ionizujícího záření. Podle principu detekce rozeznáváme tři skupiny detektorů:
q Fotografické,
založené fotochemických účincích záření (filmové dozimetry, rtg filmy, jaderné emulze),
nebo využívající fotografické zobrazení stop částic určitém látkovém prostředí (mlžné a
bublinové komory- tuto skupinu detektorů jsme zde zařadili poněkud nekonvenčně). Spektrum
tedy vyjadřuje energetické rozložení (relativní zastoupení) kvant studovaného záření. detektorů.RNDr. Výsledkem většinou energetické spektrum N(E), zachycující graficky
závislost četnosti kvant čili intenzity záření (na svislé ose) energii (vodorovná osa).: principiálního hlediska jsou fotografické detektory vlastně materiálovými detektory.1. důvodu jejich
širokého použití specifických vlastností jsou však často zařazovány samostatné skupiny.11) této kapitoly; tato skupina detektorů je
daleko nejdůležitější. důsledku
fyzikálních chemických vlivů materiálu detektoru dochází spontánnímu mizení latentního obrazu u
fotografických materiálů, spontánní deexcitaci metastabilních elektronových hladin termoluminiscenčních a
OSL dozimetrů. Vzhledem k
nízké citlivosti jsou použitelné pouze pro vysoké intenzity záření dlouhodobou kumulativní
detekci (podobně jako detektory fotografické). Všechny tyto typy elektronických detektorů záření budou
podrobně rozebírány většině textu (§2.2008 12:15:06]
.
Slábnutí odezvy fading
U většiny materiálových kumulativních detektorů setkáváme nepříznivým jevem zvaným fading: slábnutí signálu
- odezvy detektoru časem, němuž dochází průběžně období mezi ozářením vyhodnocením.-M.htm 54) [15.2. Sem patří plynové ionizační komory (včetně proporcionálních
a G.cz/DetekceSpektrometrie. Vojtěch Ullmann: Detekce aplikace ionizujícího záření
2.2.1). jeho další
charakteristiky.
Pozn.2 "Fotografická detekce ionizujícího záření";
jejich problematika aplikace často prolínají.
3.
Spektrometrie ionizujícího záření též označuje souhrnným názvem jaderná spektroskopie.
q Elektronické,
v nichž část absorbované energie ionizačního záření převádí elektrické proudy impulsy (ať
již přímým nebo zprostředkovaným způsobem), které zesilují vyhodnocují v
elektronických aparaturách (obr.
Ve spektrometrickém režimu mohou pracovat především scintilační detektory, polovodičové detektory
http://astronuklfyzika.-M.
■ Spektrometry ionizujícího záření,
které měří nejen intenzitu počet kvant záření, ale energii kvant záření příp. detektorů), scintilační detektory, polovodičové detektory, mikrokalorimetrické
detektory, magnetické spektrometry. Fotografické a
materiálové detektory budou společně popsány níže §2.3 §2. Mezi tyto nejjdenodušší detektory patří filmové termoluminiscenční dozimetry, ionizační
komory včetně G.2. Podle komplexnosti měřené informace můžeme měřící přístroje ionizujícího záření rozdělit na:
■ Detektory záření,
udávající pouze intenzitu záření, resp. počet kvant záření, bez informace druhu záření jeho
energii.
Obr