V této úvodní kapitole se pokusíme nastínit některé metodologické aspekty stavby fyziky a jejího začlenění do kontextu ostatní přírodovědy a vědeckého poznání vůbec. Tyto metodologické poznámky mohou být zajímavé např. pro studenty a zájemce nefyzikálních profesí, kteří si chtějí udělat ucelený obraz o fyzikálních aspektech zkoumání přírody.
109)
Protože složku c.Ullmann V.45) čtyřrozměrném tvaru
∂Ak/∂xk Ak
,k (1.v, které jsou ρ.10.31b) ∂ρ/∂t div vyjadřující zákon zachování elektrického náboje, lze
potom zapsat čtyřrozměrném tvaru
∂ ∂xk neboli jk
,k (1.113)
http://astronuklfyzika.vα . Veličiny proto přirozené sjednotit do
jednoho 4-vektoru (c.2008 12:14:32]
.110)
(4-divergence čtyřproudu rovna nule).dxα/dt 1,2,3), vzhledem chování transformují
jako dxα, tj.ρ můžeme vyjádřit pomocí c.111)
který nazývá čtyřpotenciál.112)
přičemž Lorentzova kalibrační podmínka (1. čtyřproudu, jehož komponenty jsou
j° c.46b) lze potom sloučit jedné prostoročasové
rovnice
ž ∂2Ak/∂xm∂xm -(4π/c) (1.cz/Gravitace1-6.ρ (1.109')
Rovnici kontinuity (1.46a,b) plyne, transformačních vlastností veličina ϕ
chová jako časová veličiny =(A) jako prostorové složky 4-vektoru, takže elektrický skalární
potenciál magnetický vektorový potenciál lze sjednotit jednoho 4-vektoru
Ak (1.
Podobně pro potenciál rovnic (1. jako prostorové složky čtyřvektoru.t jako j°= ρ.dx°/dt, lze komponenty 4-proudu
definovat takto :
jk dxk (1. Rovnice (1. Složky vektoru proudové
hustoty ρ. Hustota elektrického
náboje tedy transformuje jako časová složka nějakého čtyřvektoru.46a) (1.ρ, j), tzv.: Gravitace její místo fyzice
Jelikož objem při přechodu jiné inerciální soustavě transformuje podle vztahu dV' √(1 V2/c2)
dV transformační zákon pro stejný jako pro dx°: ρ/√(1 V2/c2).htm (36 38) [15