V této úvodní kapitole se pokusíme nastínit některé metodologické aspekty stavby fyziky a jejího začlenění do kontextu ostatní přírodovědy a vědeckého poznání vůbec. Tyto metodologické poznámky mohou být zajímavé např. pro studenty a zájemce nefyzikálních profesí, kteří si chtějí udělat ucelený obraz o fyzikálních aspektech zkoumání přírody.
c) Geometrické znázornění Lorentzovy transformace.66') byly splněny současně, musí platit s'2= k. Proto souřadnice x', y',z',t' musejí být lineárními
funkcemi souřadnic x,y,z,t.66), zůstává tedy při
transformaci mezi dvěma inerciálními soustavami invariantní:
s'2 x'2 y'2 z'2 c2t'2 c2.
Koeficient nemůže záviset ani směru rychlosti protože prostor STR předpokládáme
izotropní; mohl být funkcí nanejvýš velikosti rychlosti |V|, tj.s2,
kde nějaký činitel. Aby rovnice (1. Je-li výchozí vztažné soustavě prostoročase připsána
(pseudo)kartézská souřadnicová soustava c. Proto y'=k.1.
a) Galileiho transformace. r'= c.t',x'.htm 38) [15.Ullmann V.66) (1.s'2, čehož plyne k2=
1, takže (platí kladné znaménko aby zůstala zachována identičnost transformace soustavy S
samé sebe při V=0).s2.5.z, kde koeficient stejných
http://astronuklfyzika. interval, definovaná rovnicích (1.s'2 k(V). Světelný záblesk vyslaný časovém okamžiku t=t'=0 počátku (který v
té době splýval O') hlediska obou soustav šíří všechny strany stejnou rychlostí takže čase t
vyplňuje kulovou vlnoplochu poloměru c.1.t, resp.67)
Uvažujme, stejně jako Galileiho transformace, speciální případ podle obr.: Gravitace její místo fyzice
Obr. Veličina tzv.y, z'= k. Tento koeficient nemůže záviset souřadnicích čase, protože různé
body časové okamžiky nebyly rovnocenné, což odporuje homogenitě prostoru času. Proto stejná úvaha provedená hlediska soustavy vzhledem níž se
nečárkovaná soustava pohybuje rychlostí ukazuje, s2= k(|-V|).
Těleso pohybující rovnoměrně přímočaře hlediska soustavy podle principu relativity musí
pohybovat rovnoměrně přímočaře soustavě S'.
b) odvození Lorentzovy transformace.t'. s'2= k(V). Transformace souřadnic mezi inerciálními vztažnými soustavami.5, kdy osy obou
vztažných soustav jsou rovnoběžné stejného smyslu, osy splývají soustava vzhledem
k pohybuje konstantní rychlostí kladném směru osy Potom je-li y=0, musí být y'=0 při
libovolném podobně je-li z=0, musí být z'=0 při libovolném (plochy X'Y', stejně jako
plochy X'Z', transformují samy sebe).cz/Gravitace1-6.2008 12:14:32]
.t2 (1.10.t,x, pak přechod pohybující vztažné soustavě geometricky
znamená deformaci kosoúhlé prostoročasové souřadnice c. Soustavy S'
jsou však rovnocenné