V této úvodní kapitole se pokusíme nastínit některé metodologické aspekty stavby fyziky a jejího začlenění do kontextu ostatní přírodovědy a vědeckého poznání vůbec. Tyto metodologické poznámky mohou být zajímavé např. pro studenty a zájemce nefyzikálních profesí, kteří si chtějí udělat ucelený obraz o fyzikálních aspektech zkoumání přírody.
2008 12:13:36]
.htm 11) [15.
Obzvláštní důležitost tato metoda krátkodobých radionuklidů, které vznikají jako dceřinná
jádra radionuklidů podstatně delším poločasem rozpadu. Metastabilní
energetické hladiny vyznačují něco tučnějšími čárkami údajem době života (poločasu)
tohoto metastabilního excitovaného stavu.
Tyto směsi hermeticky uzavírají zatavují kovových nebo skleněných nádobek slouží jako přenosné
laboratorní zdroje neutronů, tzv. Základní energetický stav každého jádra je
vyznačen tlustou čárou, excitované stavy jádra tenkými čárkami údaji energii příp. Mateřská dceřinná jádra na
těchto schématech znázorňují pomocí vodorovných čárek (představujících energetické hladiny
jader), jejichž pozice schématu určena takto: vodorovné ose protonové číslo poloha
ve vertikálním směru dána energií jádra *).1.cz/JadRadFyzika4.
Rozpadová schémata radionuklidů
Pro přehledné komplexní znázornění různých druhů radioaktivních přeměn konkrétních
atomových jader používají tzv. základním stavem). Příslušný mateřský radioisotop,
připravený ozářením urychlovači nebo reaktoru, lze bez obtíží dopravit vzdálené laboratoře, kde
z něj lze průběžně separovat dceřinný krátkodobý radionuklid, který tak dispozici značně
delší dobu (danou poločasem rozpadu mateřského radionuklidu). Nejvhodnější
je berylium reakci 9Be(α, n)12C, které smícháme vhodným α-zářičem používá např. 210Po, 226Ra, 239Pu, 241Am.
Na obr. Získávání těchto sekundárních radionuklidů z
rozpadových produktů jiných radionuklidů může být efektivním způsobem jejich "výroby".
*) Při praktickém kreslení rozpadových schémat přesné proporce hodnot energií protonových čísel většinou
striktně nedodržují, dodržují jen příslušné relace stavy vyšší energií jsou zakresleny více nahoře, jádra s
větším protonovým číslem jsou více vpravo jader menším Z. další charakteristity (např. Vojtěch Ullmann: Jaderná radiační fyzika.
Některé radionuklidy přeměňují dceřinná jádra, která nejsou stabilní, ale jsou opět radioaktivní
- jedná sekundární radioisotopy. základních
stavů jader uveden poločas rozpadu, pro speciální účely popř.
Typickým příkladem radionuklidového generátoru molybden-techneciový generátor, kde
beta-rozpadem molybdenu 99Mo (T1/2=66hod. 1.10.4).4.
Sekundární radionuklidy rozpadových produktů.1.4 jsou znázorněna některá nejjednodušší typická rozpadová schémata :
http://astronuklfyzika. spin). Zařízení, které umožňuje
opakovaně separovat krátkodobý radionuklid vznikají rozpadem jiného dlouhodobějšího radionuklidu,
se nazývá radionuklidový generátor. při neutronové aktivační analýze. Radionuklidové generátory. Radioaktivní přeměna jader znázorněna šikmou
šipkou spojující mateřské dceřinné jádro jeho příslušné energetické hladině, která daného
procesu realizuje; této šipky uveden typ přeměny (α, ΕC) příslušná energie kvanta
záření. neutronové generátory, používané např. přechody jsou vyznačeny kolmými šipkami spojujícími
vyšší hladiny příslušnými výslednými nižšími hladinami (příp.RNDr.4.
dalších charakteristikách) patřičné vertikální výšce nad základním stavem.) vzniká metastabilní technecium 99m
Tc (T1/2=6hodin),
které čistým zářičem gama (Eγ=140keV) široké uplatnění scintigrafii nukleární medicíně -
viz kapitola "Radionuklidová scintigrafie".4 Radionuklidy
terčíkovým materiálem některými lehkými prvky, které dávají velký výtěžek neutronů reakci (α, n). rozpadová schémata (obr. Deexcitace vzbuzených hladin, tj