V této úvodní kapitole se pokusíme nastínit některé metodologické aspekty stavby fyziky a jejího začlenění do kontextu ostatní přírodovědy a vědeckého poznání vůbec. Tyto metodologické poznámky mohou být zajímavé např. pro studenty a zájemce nefyzikálních profesí, kteří si chtějí udělat ucelený obraz o fyzikálních aspektech zkoumání přírody.
Přítomnost látek schopných
odrážet vylétající neutrony vracet tak reakce) zmenšují kritické množství, stejně jako lehká jádra schopná při
pružných odrazech zpomalovat (moderovat) neutrony. Pro nízké koncentrace štěpného materiálu již zpravidla žádné kritické množství neexistuje a
řetězová štěpná reakce nemůže samovolně vzniknout; možnostech štěpných reakcí takových
případech, pomocí moderace neutronů technologií ADTT, bude pojednáno níže. obsažen
v uranové rudě, která následující zastoupení jednotlivých isotopů uranu: 238U 99,284%, 235U 0,711% a
stopové množství 234U (0,005%). Vojtěch Ullmann: Jaderná radiační fyzika.2008 12:13:33]
.3 Jaderné reakce
w Rozměry geometrické uspořádání oblasti obsahující štěpný materiál
Kritické množství tím menší, čím kompaktnější geometrické uspořádání.cz/JadRadFyzika3. Množství 0,7% štěpného 235U pro většinu technologií není dostatečné
pro nastartování udržení řetězové štěpné reakce.10. Osoby nacházející
se místě nehody obdržely velmi vysoké, nezřídka letální, dávky záření, načež následovala značná
kontaminace prostředí radioaktivními štěpnými produkty. 1. však vyrábět uměle uranu 238U neutronovou fúzí jaderném
http://astronuklfyzika. obohacení uranu izotopem 235U.
Pro jednotlivé druhy štěpných materiálů jejich kritická hmotnost mkrit udává pro kulové homogenní
uspořádání poloměru Rkrit) čistého materiálu, např. Může totiž dojít k
překročení kritického množství pro danou (použitou) konfiguraci, čímž došlo lavinovitému
rozběhnutí řetězové štěpné reakce (k>1) velmi nebezpečnými radiačními následky.
Frakce fluoridu patřičně zvýšeným obsahem 235U pak opět chemicky převádí jiné vhodné sloučeniny, popř.
Aby tomu nedošlo, nutno štěpný materiál skladovat uspořádání nádobách tzv.
w Přítomnost dalších látek materiálů schopných pohlcovat, odrážet zpomalovat neutrony
Látky vysokým účinným průřezem absorbce neutronů výrazně zvyšují kritické množství. Pokud štěpný materiál obklopen látkou odrážející neutrony (tzv. bezpečnostní
geometrií největším povrchem poměru objemu (na rozdíl kulového uspořádání, kde tomu
opačně), aby většina neutronů snadno unikla mimo objem štěpného materiálu nemohla tak způsobovat
další štěpení. Proto potřeba jeho zatoupení uměle zvýšit provést
tzv.
Další štěpný materiál, plutonium 239Pu, přírodě prakticky nevyskytuje *), neboť podstatně kratší
poločas rozpadu než izotopy uranu. V
přírodě vyskytuje jediný nuklid, přímo použitelný pro řetězovou štěpnou reakci uran 235U. 245-curium 12kg, 246-curium 7kg, 251-
californium 9kg).
Skladování nadkritického množství štěpného materiálu značně delikátní záležitost. první fázi uran chemicky sloučí fluorem plynný hexafluorid UF6, který pak separuje opakovanou difuzí
a ulracentrifugací speciálních kolonách, využitím nepatrně rozdílné molekulové hmotnosti sloučenin 235UF6 238UF6.RNDr. kovový
obohacený uran. Nelze jej provést čistě chemicky (všechny izotopy
uranu mají chemické vlastnosti stejné), ale nutno využít nepatrně odlišných fyzikálních vlastností různých isotopů
uranu. reflektorem či
neutronovým pláštěm), kritické množství zmenšuje 2-3krát. Je-li koncentrace štěpného materiálu
menší než 100%, kritická hmotnost výrazně roste, zvláště pokud jsou obsaženy látky absorbující
neutrony.
235U mkrit kg, Rkrit ;
239Pu: mkrit kg, Rkrit ;
233U mkrit kg, Rkrit ;
pro některé další transurany kritické množství ještě menší (např. Nejnižší pro uspořádání štěpného
materiálu objemu tvaru koule, kde nejvyšší poměr objemu velikosti povrchu (kterým mohou neutrony unikat).htm (12 34) [15.
Obohacování uranu proces technologicky velmi náročný nákladný.
Příprava štěpného materiálu
Materiál, schopný řetězové štěpné reakce, může být přírodního původu, nebo vyráběný uměle