V této úvodní kapitole se pokusíme nastínit některé metodologické aspekty stavby fyziky a jejího začlenění do kontextu ostatní přírodovědy a vědeckého poznání vůbec. Tyto metodologické poznámky mohou být zajímavé např. pro studenty a zájemce nefyzikálních profesí, kteří si chtějí udělat ucelený obraz o fyzikálních aspektech zkoumání přírody.
V
přírodě vyskytuje jediný nuklid, přímo použitelný pro řetězovou štěpnou reakci uran 235U. Pokud štěpný materiál obklopen látkou odrážející neutrony (tzv.
Frakce fluoridu patřičně zvýšeným obsahem 235U pak opět chemicky převádí jiné vhodné sloučeniny, popř.
w Přítomnost dalších látek materiálů schopných pohlcovat, odrážet zpomalovat neutrony
Látky vysokým účinným průřezem absorbce neutronů výrazně zvyšují kritické množství. 1. Nelze jej provést čistě chemicky (všechny izotopy
uranu mají chemické vlastnosti stejné), ale nutno využít nepatrně odlišných fyzikálních vlastností různých isotopů
uranu. Nejnižší pro uspořádání štěpného
materiálu objemu tvaru koule, kde nejvyšší poměr objemu velikosti povrchu (kterým mohou neutrony unikat).RNDr. Vojtěch Ullmann: Jaderná radiační fyzika. reflektorem či
neutronovým pláštěm), kritické množství zmenšuje 2-3krát. obsažen
v uranové rudě, která následující zastoupení jednotlivých isotopů uranu: 238U 99,284%, 235U 0,711% a
stopové množství 234U (0,005%).
Aby tomu nedošlo, nutno štěpný materiál skladovat uspořádání nádobách tzv.10. však vyrábět uměle uranu 238U neutronovou fúzí jaderném
http://astronuklfyzika. Je-li koncentrace štěpného materiálu
menší než 100%, kritická hmotnost výrazně roste, zvláště pokud jsou obsaženy látky absorbující
neutrony.2008 12:13:33]
. Přítomnost látek schopných
odrážet vylétající neutrony vracet tak reakce) zmenšují kritické množství, stejně jako lehká jádra schopná při
pružných odrazech zpomalovat (moderovat) neutrony.3 Jaderné reakce
w Rozměry geometrické uspořádání oblasti obsahující štěpný materiál
Kritické množství tím menší, čím kompaktnější geometrické uspořádání.htm (12 34) [15.
Další štěpný materiál, plutonium 239Pu, přírodě prakticky nevyskytuje *), neboť podstatně kratší
poločas rozpadu než izotopy uranu. Osoby nacházející
se místě nehody obdržely velmi vysoké, nezřídka letální, dávky záření, načež následovala značná
kontaminace prostředí radioaktivními štěpnými produkty.
Obohacování uranu proces technologicky velmi náročný nákladný.
Skladování nadkritického množství štěpného materiálu značně delikátní záležitost. Proto potřeba jeho zatoupení uměle zvýšit provést
tzv. Může totiž dojít k
překročení kritického množství pro danou (použitou) konfiguraci, čímž došlo lavinovitému
rozběhnutí řetězové štěpné reakce (k>1) velmi nebezpečnými radiačními následky. první fázi uran chemicky sloučí fluorem plynný hexafluorid UF6, který pak separuje opakovanou difuzí
a ulracentrifugací speciálních kolonách, využitím nepatrně rozdílné molekulové hmotnosti sloučenin 235UF6 238UF6. bezpečnostní
geometrií největším povrchem poměru objemu (na rozdíl kulového uspořádání, kde tomu
opačně), aby většina neutronů snadno unikla mimo objem štěpného materiálu nemohla tak způsobovat
další štěpení.
Pro jednotlivé druhy štěpných materiálů jejich kritická hmotnost mkrit udává pro kulové homogenní
uspořádání poloměru Rkrit) čistého materiálu, např. obohacení uranu izotopem 235U.
235U mkrit kg, Rkrit ;
239Pu: mkrit kg, Rkrit ;
233U mkrit kg, Rkrit ;
pro některé další transurany kritické množství ještě menší (např.cz/JadRadFyzika3. Pro nízké koncentrace štěpného materiálu již zpravidla žádné kritické množství neexistuje a
řetězová štěpná reakce nemůže samovolně vzniknout; možnostech štěpných reakcí takových
případech, pomocí moderace neutronů technologií ADTT, bude pojednáno níže. Množství 0,7% štěpného 235U pro většinu technologií není dostatečné
pro nastartování udržení řetězové štěpné reakce. kovový
obohacený uran.
Příprava štěpného materiálu
Materiál, schopný řetězové štěpné reakce, může být přírodního původu, nebo vyráběný uměle. 245-curium 12kg, 246-curium 7kg, 251-
californium 9kg)