V této úvodní kapitole se pokusíme nastínit některé metodologické aspekty stavby fyziky a jejího začlenění do kontextu ostatní přírodovědy a vědeckého poznání vůbec. Tyto metodologické poznámky mohou být zajímavé např. pro studenty a zájemce nefyzikálních profesí, kteří si chtějí udělat ucelený obraz o fyzikálních aspektech zkoumání přírody.
245-curium 12kg, 246-curium 7kg, 251-
californium 9kg).
w Přítomnost dalších látek materiálů schopných pohlcovat, odrážet zpomalovat neutrony
Látky vysokým účinným průřezem absorbce neutronů výrazně zvyšují kritické množství.
235U mkrit kg, Rkrit ;
239Pu: mkrit kg, Rkrit ;
233U mkrit kg, Rkrit ;
pro některé další transurany kritické množství ještě menší (např. Je-li koncentrace štěpného materiálu
menší než 100%, kritická hmotnost výrazně roste, zvláště pokud jsou obsaženy látky absorbující
neutrony. 1.htm (12 34) [15.3 Jaderné reakce
w Rozměry geometrické uspořádání oblasti obsahující štěpný materiál
Kritické množství tím menší, čím kompaktnější geometrické uspořádání.
Příprava štěpného materiálu
Materiál, schopný řetězové štěpné reakce, může být přírodního původu, nebo vyráběný uměle. kovový
obohacený uran.
Další štěpný materiál, plutonium 239Pu, přírodě prakticky nevyskytuje *), neboť podstatně kratší
poločas rozpadu než izotopy uranu. však vyrábět uměle uranu 238U neutronovou fúzí jaderném
http://astronuklfyzika. Může totiž dojít k
překročení kritického množství pro danou (použitou) konfiguraci, čímž došlo lavinovitému
rozběhnutí řetězové štěpné reakce (k>1) velmi nebezpečnými radiačními následky. Osoby nacházející
se místě nehody obdržely velmi vysoké, nezřídka letální, dávky záření, načež následovala značná
kontaminace prostředí radioaktivními štěpnými produkty. reflektorem či
neutronovým pláštěm), kritické množství zmenšuje 2-3krát.RNDr. Vojtěch Ullmann: Jaderná radiační fyzika. první fázi uran chemicky sloučí fluorem plynný hexafluorid UF6, který pak separuje opakovanou difuzí
a ulracentrifugací speciálních kolonách, využitím nepatrně rozdílné molekulové hmotnosti sloučenin 235UF6 238UF6. Pokud štěpný materiál obklopen látkou odrážející neutrony (tzv. Množství 0,7% štěpného 235U pro většinu technologií není dostatečné
pro nastartování udržení řetězové štěpné reakce.cz/JadRadFyzika3.10. Pro nízké koncentrace štěpného materiálu již zpravidla žádné kritické množství neexistuje a
řetězová štěpná reakce nemůže samovolně vzniknout; možnostech štěpných reakcí takových
případech, pomocí moderace neutronů technologií ADTT, bude pojednáno níže.
Aby tomu nedošlo, nutno štěpný materiál skladovat uspořádání nádobách tzv. V
přírodě vyskytuje jediný nuklid, přímo použitelný pro řetězovou štěpnou reakci uran 235U. obohacení uranu izotopem 235U.
Frakce fluoridu patřičně zvýšeným obsahem 235U pak opět chemicky převádí jiné vhodné sloučeniny, popř.2008 12:13:33]
. Přítomnost látek schopných
odrážet vylétající neutrony vracet tak reakce) zmenšují kritické množství, stejně jako lehká jádra schopná při
pružných odrazech zpomalovat (moderovat) neutrony. bezpečnostní
geometrií největším povrchem poměru objemu (na rozdíl kulového uspořádání, kde tomu
opačně), aby většina neutronů snadno unikla mimo objem štěpného materiálu nemohla tak způsobovat
další štěpení. obsažen
v uranové rudě, která následující zastoupení jednotlivých isotopů uranu: 238U 99,284%, 235U 0,711% a
stopové množství 234U (0,005%). Nelze jej provést čistě chemicky (všechny izotopy
uranu mají chemické vlastnosti stejné), ale nutno využít nepatrně odlišných fyzikálních vlastností různých isotopů
uranu.
Skladování nadkritického množství štěpného materiálu značně delikátní záležitost.
Obohacování uranu proces technologicky velmi náročný nákladný. Proto potřeba jeho zatoupení uměle zvýšit provést
tzv. Nejnižší pro uspořádání štěpného
materiálu objemu tvaru koule, kde nejvyšší poměr objemu velikosti povrchu (kterým mohou neutrony unikat).
Pro jednotlivé druhy štěpných materiálů jejich kritická hmotnost mkrit udává pro kulové homogenní
uspořádání poloměru Rkrit) čistého materiálu, např