Fyzika - fundamentální přírodní věda

| Kategorie: Skripta  | Tento dokument chci!

V této úvodní kapitole se pokusíme nastínit některé metodologické aspekty stavby fyziky a jejího začlenění do kontextu ostatní přírodovědy a vědeckého poznání vůbec. Tyto metodologické poznámky mohou být zajímavé např. pro studenty a zájemce nefyzikálních profesí, kteří si chtějí udělat ucelený obraz o fyzikálních aspektech zkoumání přírody.

Vydal: - Neznámý vydavatel Autor: Vojtěch Ullmann

Strana 129 z 673

Vámi hledaný text obsahuje tato stránku dokumentu který není autorem určen k veřejnému šíření.

Jak získat tento dokument?






Poznámky redaktora
Pravděpodobnost jaderných reakcí lze názorně vyjádřit geometrickým způsobem pomocí tzv. Gravitační kolaps" téže monografie). Strhávání nabírání nukleonů Speciálním případem přímé jaderné interakce proces "strhávání" (stripping) nebo "nabírání" (pick-up) nukleonů. Z extrémně horké komprimované kvark-gluonové plasmy patrně sestával Vesmír prvních mikrosekundách po velkém třesku, začátku hadronové éry (§5.htm 34) [15.3 Jaderné reakce Srážky těžkých jader při těchto velmi vysokých energiích realizují největších urychlovačích (RHIC, připravovaný LHC), viz §1. této kategorie řadí případ dvojnásobné kolize, srážky primární částice dvěma nukleony. deuteronu může být "stržen" neutron pohlcen terčíkovým jádrem, zatímco proton pokračuje pohybu dráze blízké původnímu deuteronu. Vojtěch Ullmann: Jaderná radiační fyzika.cz/JadRadFyzika3. neutron prolétající polem terčíkového jádra v něm "nalezne" proton vhodném momentu hybnosti, nímž spojí vytvoří deuteron, který pak uniká jako celek z terčíkového jádra. Při jaderných reakcích částic složených slaběji vázaných nukleonů deuteronů 2H1, tritonů 3H1, nebo jader hélia 3He2, nemusí být tato složená částice pohlcena jako celek terčíkovým jádrem. účinného průřezu reakce. Toto jádro přechází základního stavu buď emisí kvant (radiační záchyt) při menších excitačních energiích, nebo při dostatečně velké excitační energii emisí částice (neutronu, protonu nebo α-částice) evaporace částice. Při strhávání neutronů dochází reakci (d,p), která preferována zvláště při nízkých energiích nalétajících deuteronů, při vyšších energiích nastává reakce (d,n) způsobená strháváním protonů.RNDr. http://astronuklfyzika.2 "Konečné fáze hvězdné evoluce. Formování struktury vesmíru. Účinný průřez jaderných reakcí Podobně jako chemických reakcí, jaderné reakce probíhají různě "ochotně" různou účinností či pravděpodobností, závislosti druhu reakce energii částic. Např." knihy "Gravitace, černé díry fyzika prostoročasu"). těžších jader přímý proces probíhá většinou periferně vnějších "povrchových" nukleonech.10. Velký třesk. q Proces složeného jádra, při němž částice vniknutí jádra vykoná uvnitř jádra několik srážek nukleony, při nichž ztratí tolik energie, není schopna opustit jádro vzniká složené jádro (složené původního jádra a vázané nalétající částice) excitovaném stavu. Rovněž nitru neutronových hvězd se mohl tento exotický stav látky vyskytovat (§4. 1. Účinný průřez (angl. Pronikne-li ostřelující částice oblasti terčíkového jádra, může interakce probíhat zásadě dvěma způsoby (aspoň podle našich modelových představ): q Přímý proces, při němž částice srazí jedním nukleonů uvede jej vyššího energetického stavu nebo jej vyrazí jádra (uvolní vazby poli jaderných sil); sama částice může buď jádře zůstat vázána, nebo jádro rovněž opustit.2008 12:13:33] . rozdíl přímých procesů jsou tyto evaporační částice složeného jádra emitovány prakticky izotropně všech úhlů. hlediska úhlového rozložení jsou sekundární částice, produkované v jaderných reakcích přímými procesy, kolimovány "dopředu", směru nalétajících částic. Mechanismy jaderných reakcí Jaderné reakce jsou většinou značně složité procesy, při nichž "vstupuje hry" řada faktorů vlastností nalétajících částic (především jejich elektrický náboj další vykazované interakce silná, slabá), jejich energie, moment hybnosti impaktní faktor, jakož struktura ostřelovaných atomových jader. Opačným pochodem ke strhování proces nabírání nukleonů reakce (n,d), (p,d), kdy např.5, pasáž "Velké urychlovače".4 "Standardní kosmologický model. Zkoumání vlastností kvark-gluonové plasmy důležité nejen pro jadernou fyziku (detailnější poznání vlastností silné interakce struktury hadronů), ale pro astrofyziku