Proto také neexistuje skutečné magnetické
množství, jehož nositelem byly konce siločar, proto jsou oba póly
každého magnetu stejně silné. Obr. 130. Když zužuje průřez, jímž indukční čáry
Obr.
Čáry, které nám tak nepodaří ovládnout, tvoří rozptyl. Magnetická indukční trubice.
Indukční čára železe běží pod úhlem 88° normále láme do
vzduchu. Lom indukčních čar. 129.
Indukční silové magnetické čáry jsou vždy uzavřené, nikde nezačínají
ani nekončí jako elektrické čáry.
tg/J tg« 88° 0,0104;^ 38'
Vidíme, indukční čára vychází železa téměř kolmo. Zmagnetování čili intenzita magnetizace
J Hv. 3000 1), vystupují
indukční čáry při velkých úhlech dopadu železe téměř kolmo vzduchu.
2.
Příklad. Tím, vložíme indukčním trubicím cesty
železo, měníme podle potřeby jejich průřez předpisujeme jim jistou cestu. 129. Představujeme si,
že indukční čáry probíhají uzavřené indukční trubici, která může mít pro
měnlivý průřez, obr. 000 G.our [T; číslo, H/m, Az/m] (77a)
Intenzita magnetického silového pole závisí prostředí, indukční čáry však
na prostředí nezávisí; můžeme považovat prvotní jev říkat, vy
volají silové čáry počtu závislém prostředí. 128 intenzita magnetického pole mezeře
násobek intenzity, kterou měl magnet bez jádra. Permeabilita železa 3000krát větší než permeabilita vzduchu. elektromagnetu obr.
Přecházejí-li indukční čáry jednoho prostředí druhého, lámou se,
obr.p0 ([Lr (78)
118
. 130.
procházejí, musí tam čáry zhustit, čili indukce roste. Když upraví póly
s kuželovými špičkami proti sobě, dosáhne intenzity 10* A/m, čili
magnetické indukce tj. Tangenty úhlů dopadu jsou poměru permeabilit prostředí:
tg (z2
Protože železa veliké proti p,2 vzduchu (např.p