Předložený studijní materiál slouží jako základní studijní materiál distanční formy
studia předmětu Elektrotechnika 2, který navazuje na předmět Elektrotechnika 1 a spolu s ním
vytváří nezbytně nutné teoretické základy společné pro všechny elektrotechnické obory, které
jsou potřebné pro studium předmětů specializací v dalších ročnících studia.
Autor: Doc. Ing. Jiří Sedláček, CSc. Prof. Ing. Juraj Valsa, CSc.
Strana 19 z 186
Vámi hledaný text obsahuje tato stránku dokumentu který není autorem určen k veřejnému šíření.
přitom však třeba mít stále mysli, toto
vyjádření harmonické veličiny imaginární částí komplexoru symbolické představuje
určitou transformaci, která platí pouze pro lineární obvody při stejném kmitočtu všech
obvodových veličin.3.
ψω +tj
m eI
dt
d
[0 jωL (t) =)3,0314(
.
Na základě uvedených vztahů pravidel pro operace fázory možno všechny operace
s harmonickými veličinami, nimiž při analýze harmonického stavu setkáme, převést na
podstatně jednodušší operace fázory.39,0
.3
.2, −tj
e
Napětí indukované cívce možno psát u(t) L
dt
tdi )(
. 62,8.e 62,8.22
ψj
mm eU= 9,0
.
Rotující fázor (komplexor) proudu (t) [A] .3 :
Vyjádřete harmonické napětí časovými průběhy (t) )ψω +tm sinU ,
pro u1(t)= 50sin (314 0,2) [V] (t) sin (314 0,8) [V] pomocí fázorů a
najděte časový průběh součtového napětí.3 -2
Časový průběh proudu cívky indukčnosti =1H dán vztahem
i(t) )ψω +tIm sin 3,0314sin2, )−t [A] Určete časový průběh napětí cívce, je-li
obvod harmonickém ustáleném stavu.
3. . souladu vztahem (3.
ψω +tj
m )3,0314(
.e 62,8.3 25)
Výsledný fázor získáme dělením fázoru Obrázek 3.2, −tj
e
= 314.2, −tj
e )3,0314( −tj )2/3,0314( π+−tj )27,1314( +tj
e
Časový průběh napětí indukovaného cívce tedy
u (t) Im{u )(t)} +tm sinU 62,8 sin (314 1,27) [V] .7 Derivace integrace proudu Im
faktorem Modul dělíme kruhovým kruhovým kmitočtem argument zmenšíme o
2/π (fázo pootočil 2/π
v záporném smyslu).Elektrotechnika 19
)(
1
t
j
i
ω
= (3.20 j
e
Výsledné součtové napětí pak můžeme psát
Um Um1 Um2 49,00 9,93 12,43 15,67= 61,43 j25,60 [V] .)3,0314(
.3 24)
můžeme komplexor napětí vyjádřit jako
u(t) =L
dt
d
i (t) L
dt
d
[ L)(
.2 Shrnutí podkapitoly 3.
Příklad 3.)(
.11
ψj
mm eU= 2,0
.3.
Fázory obou napětí měřítku amplitud jsou
U 49,00 9,93 [V] ,1
.55,66 j
e
Jeho okamžitá hodnota (t) Im{u(t)}= )ψω +tm sinU =66,55 sin (314 0,39) [V] .2
.
Příklad 3.50 j
e
U 12,43 15,67 [V]