ELEKTROTECHNIKA II

| Kategorie: Skripta  | Tento dokument chci!

Předložený studijní materiál slouží jako základní studijní materiál distanční formy studia předmětu Elektrotechnika 2, který navazuje na předmět Elektrotechnika 1 a spolu s ním vytváří nezbytně nutné teoretické základy společné pro všechny elektrotechnické obory, které jsou potřebné pro studium předmětů specializací v dalších ročnících studia.

Autor: Doc. Ing. Jiří Sedláček, CSc. Prof. Ing. Juraj Valsa, CSc.

Strana 17 z 186

Vámi hledaný text obsahuje tato stránku dokumentu který není autorem určen k veřejnému šíření.

Jak získat tento dokument?






Poznámky redaktora
3 15) a pro argument (viz obr. Kennelyho zápisu ψ∠= (3.3 připomíná součet nebo rozdíl vektorů.3 13) (čte "verzor ").303303 ,18031803333 0 8 7 =°∠==+= °−∠=°∠===−= − j jj ej ee U U ππ Sčítání odčítání Sčítání odčítání fázorů resp.3.3.3.3 17))( . exponenciální (polární) tvar komplexního čísla , (3.3-4a.3 12)ψj eU. grafickém vyjádření (obr.Elektrotechnika 17 Z Eulerova vztahu vyplývá druhý, tzv. obecně komplexních čísel uplatníme například při řešení rovnic plynoucích Kirchhoffových zákonů. Je-li ″ + ′ = ″ + ′ = 222111 ujuuju pak )()( 212121 ″ ± ″ + ′ ± ′ =′′+′=±= uujuuujuUUU (3. Zde přípustné psát úhel stupních.3 14) Slučujeme (sečítáme, odečítáme) tedy zvlášť reálné zvlášť imaginární části čísel.3 16) Násobení dělení komplexních čísel využívá při výpočtech základě zobecněného Ohmova zákona, jak bude vysvětleno podkapitole 3.=U ve kterém přímo obsažena nejdůležitější informace modulu argumentu čísla. Uvedený postup platí pro součin libovolného počtu .3-4) 2211 2211 21 21 coscos sinsin ψψ ψψ ψ UU UU uu uu u u tg ± ± = ′ ± ′ ″ ± ″ = ′ ′′ = (3. Pro výsledný modul pak platí podle kosinové věty )cos(2 2121 2 2 2 1 −±+= UUUUU (3.4. βαγ + === jj eABeCBAC Modul součinu roven součinu modulů argument součtu argumentů jednotlivých součinitelů, jak vidět obr. při něm výhodné pracovat složkovým tvarem komplexního čísla. Máme-li jednotlivá komplexní čísla polárním tvaru, můžeme jejich součet nebo rozdíl vypočítat přímo modulů argumentů. Pro jednoduchost někdy používá tzv. Máme-li komplexní čísla βα jj eBbjbeAaja =′′+′==′′+′= , pak jejich součin snadno získáme použitím exponenciálních tvarů (3. Příklady zápisu komplexních čísel jejich převodu složkového polární tvar: ,87,1265543 ,13,535543 2143,2 2 9273,0 1 °∠==+−= °∠==+= j j ej ej U U ,13,535543 ,87,1265543 9273,0 4 2143,2 3 °−∠==−= °−∠==−−= − − j j ej ej U U ,90333 ,90333 2/ 6 2/ 5 °−∠==−= °∠=== − π π j j ej ej U U