ELEKTROTECHNIKA II

| Kategorie: Skripta  | Tento dokument chci!

Předložený studijní materiál slouží jako základní studijní materiál distanční formy studia předmětu Elektrotechnika 2, který navazuje na předmět Elektrotechnika 1 a spolu s ním vytváří nezbytně nutné teoretické základy společné pro všechny elektrotechnické obory, které jsou potřebné pro studium předmětů specializací v dalších ročnících studia.

Autor: Doc. Ing. Jiří Sedláček, CSc. Prof. Ing. Juraj Valsa, CSc.

Strana 16 z 186

Vámi hledaný text obsahuje tato stránku dokumentu který není autorem určen k veřejnému šíření.

Jak získat tento dokument?






Poznámky redaktora
.Fakulta elektrotechniky komunikačních technologií VUT Brně Obrázek 3.3. kvadrant), platí )/( uuarctg ′′′−= (3. Obrázek 3. Přitom úhel stupních (jako číslo desítkové soustavě s desetinami setinami stupně) získáme úhlu radiánech vynásobením konstantou 180 57,2958.1 Základní operace symbolického počtu Základní operace harmonicky časově proměnnými veličinami můžeme převést na podstatně jednodušší operace fázory komplexní rovině.3 Časové průběhy čísel.3 11) Poznámka: Kalkulátory, které dovolují pracovat komplexními čísly, převod mezi oběma formami čísla obvykle provádějí ohledem znaménka reálné imaginární části. Je-li dále 0>′′u (2.3. Jejich absolutní velikosti (moduly) budeme označovat velkou kurzivou tedy Im.3 7) Modul fázoru (absolutní hodnotu, velikost) určíme jako U ´´´ 22 uu (3.3.3 9) Argument (úhel) vyjadřujeme radiánech, ale při numerických výpočtech elektrotechnické praxi často setkáváme vyjádřením úhlu stupních.ˆ 3.3-3, pro jednotlivé složky fázoru platí u´=Ucosψ, u´´=Usinψ.3.3 6) kde u´´ jsou reálná imaginární složka komplexního čísla, imaginární jednotka. Pokud hodnota argumentu dána výrazem (3.3 10) je-li (3.2 Fázorový diagram Obrázek 3. Při manuálním zápisu fázorů fázory označují velkými písmeny pomocnými znaky (například stříškou nad písmenem ). Nejdůležitější pravidla pro základní operace fázory jsou shodná pravidly komplexního počtu stručně zopakujeme následujícím odstavci.3 může se pohybovat intervalu 0>′u ( )2/,2/ Je-li 0=′u číslo čistě imaginární, ′′=U a 2/πψ pro 0proa0 <′′−=>′′ Je-li reálná část komplexního čísla záporná, fázor leží nebo kvadrantu. Poznámka: Rotující fázor (komplexor) budeme textu označovat malým tučným písmenem u(t), i(t), fázory velkým tučným písmenem ,Um, Im. kvadrant), pak0<′′ )/( uuarctg ′′′+−= (3. Jak vidět obr.3 8) Pro argument komplexního čísla platí m(U) Re(Uψ arctg arctg (u´´/ u´) (3.4 Fázor Při výpočtu argumentu nutno brát úvahu, kterém kvadrantu komplexní roviny komplexní číslo leží.3. Fázor vyjádřený komplexním číslem můžeme vyjádřit složkovém tvaru U u´+ u´´, (3. však vhodné o správnosti postupu přesvědčit zvláštnosti práce kalkulátoru praktických příkladech ověřit. (3