uzlová napětí) jako U10, U20, .42 )
které lze již snadno zapsat maticovém tvaru jako
⎥
⎦
⎤
⎢
⎣
⎡
−
=⎥
⎦
⎤
⎢
⎣
⎡
⋅⎥
⎦
⎤
⎢
⎣
⎡
+−
−+
02
01
20
10
322
221
I
I
U
U
GGG
GGG
.3 Metoda uzlových napětí (MUN)
Řešení obvodu základě metody uzlových napětí probíhá opět třech krocích:
1.43 )
U10 U20
0
I2
I1 I3
.
Proudy tekoucí uzlu bereme kladným znaménkem, proudy tekoucí uzlu se
záporným znaménkem.41 )
022032102 IUGGUG −=++− 3.39 )
rovnice uzlu
( 0
11
0220
3
1020
2
=++− IU
R
UU
R
...6. Postup vysvětlíme příkladu podle Obr. 3.30. Řešením soustavy rovnic obdržíme velikosti uzlových napětí
v obvodu. nezávislé uzly, označíme kladném smyslu jejich napětí vzhledem referenčnímu
uzlu (tzv. 3. Vypočítáme proudy napětí jednotlivých prvcích obvodu. Uzel spodním okraji schématu označíme jako referenční
(pořadové číslo nula), nezávislým uzlům přidělíme pořadová čísla Uzlová napětí
označíme jako U10 U20. Případné zdroje napětí nahradíme (pokud možné) ekvivalentními zdroji
proudu.
3. Vybereme jeden uzlů obvodu prohlásíme jej tzv.40 )
Použijeme-li místo převrácených hodnot odporů vodivosti, dostáváme úpravě rovnice
012021021 IUGUGG =−+ 3.
Obr.
2.
Metoda uzlových napětí vyžaduje, aby zdroje obvodu (nezávislé řízené) byly výhradně
zdroje proudu. Pro jednotlivé nezávislé uzly formulujeme rovnice podle Kirchhoffova zákona. 3. referenční uzel, zpravidla mu
přiřazuje pořadové číslo Jeho potenciál pokládáme rovný nule.Elektrotechnika 73
3.30: metodě uzlových napětí
Obvod celkem tři uzly. Očíslujeme ostatní,
tzv. Rovnice podle Kirchhoffova zákona pro uzel pak zní
( 0
11
012010
2
10
1
=−−+ IUU
R
U
R
, 3. U(n-1)0. 3