Analýza obvodů přímou aplikací Kirchhoffových zákonů základní nejobecnější
metoda. 3.23 3. rovnice
( 3.23 )
00223 =++− UUU 3. IRUIRUIRU === 3.25 můžeme dosadit 3.20 )
dostáváme soustavu tří rovnic pro všechny větvové proudy I1, I1.Elektrotechnika 63
Pokud zvolíme jako oka (smyčky 2), dostáváme rovnice:
03101 =++− UUU 3.20 pak spolu rovnicemi 3. Jako závislý uzel volen uzel Nezávislými uzly jsou pak uzly a
nezávislými smyčkami jsou smyčky (oka obvodu). Jejím výsledkem jsou proudy napětí všech prvcích obvodu.24 tvoří soustavu tří rovnic pro tři napětí.24 )
Pro třetí možnou smyčku (složenou) bychom dostali 0022101 =+++− UUUU Tato rovnice
je však opět lineárně závislá prvních dvou proto pro výpočet nepoužitelná.26 )
Podobně lze soustavu rovnic formulovat také pro napětí všech prvcích obvodu.25 vyjádří proudy dosadí např.
Uvážíme-li dále Ohmův zákon, lze formulovat tři rovnice pro napětí rezistorech
333222111 .15 .23 3.,.24 čímž spolu rovnicí např.,.
V uvedeném příkladě tak, rovnic 3. Použitím Kirchhoffových zákonů
obdržíme výchozí rovnice tvaru:
UZ1 UZ2
U1 U5
U6
U2 U4a c
R1 R5
R6
R2 R4
I1
I3
I5I4I2
I6
1 2
34
.15:
Sestavte výchozí rovnice pro obvodu Obr. 3.25 )
Rovnice 3.20.
Příklad 3. 3.20: Řešení obvodu přímou aplikací Kirchhoffových zákonů
Výše popsanými postupy dojdeme závěru, obvod tři nezávislé uzly tři nezávislé
smyčky.
Obr. Rovnice lze psát v
maticovém tvaru:
⎥
⎥
⎥
⎦
⎤
⎢
⎢
⎢
⎣
⎡
−
=
⎥
⎥
⎥
⎦
⎤
⎢
⎢
⎢
⎣
⎡
⋅
⎥
⎥
⎥
⎦
⎤
⎢
⎢
⎢
⎣
⎡
−
−
02
01
3
2
1
32
31
0
0
0
111
U
U
I
I
I
RR
RR 3.
Nevýhodou metody skutečnost, vede příliš vysoký počet rovnic pro poměrně
jednoduché obvody, jak demonstruje Příklad 3